ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система измерений количества и параметров нефти сырой Студеного месторождения НГДУ «Нурлатнефть»

Назначение средства измерений

Система измерений количества и параметров нефти сырой Студеного месторождения НГДУ «Нурлатнефть» (далее - система) предназначена для измерений массы, массового расхода и параметров сверхвязкой нефти сырой, поступающей со скважин Студеного месторождения и подлежащей сдаче на ДНС-4 «Азат» НГДУ «Нурлатнефть».

Описание средства измерений

Принцип действия системы основан на использовании прямого метода динамических измерений массы сырой нефти с применением расходомеров массовых. Выходные электрические сигналы расходомеров массовых поступают на соответствующие входы измерительно-вычислительного комплекса, который преобразует их и вычисляет массу сырой нефти по реализованному в нем алгоритму.

Система представляет собой единичный экземпляр измерительной системы, спроектированной для конкретного объекта из компонентов серийного отечественного и импортного производства и состоящей из входного и выходного коллекторов, блока фильтров, блока измерительных линий, узла подключения передвижной поверочной установки, системы обработки информации и системы дренажа. Монтаж и наладка системы осуществлены непосредственно на объекте эксплуатации в соответствии с проектной и эксплуатационной документацией на систему.

Система состоит из двух (одного рабочего, одного резервно - контрольного) измерительных каналов массы и массового расхода сырой нефти, температуры, избыточного давления, разности давления, объемной доли воды в сырой нефти, системы сбора и обработки информации, в которые входят следующие средства измерений:

- расходомер массовый Promass 83F (далее MP), зарегистрирован в Федеральном информационном фонде обеспечения единства измерений под № 15201-11;
 - влагомер сырой нефти ВСН-АТ, Госреестр № 42678-09;
- преобразователь (избыточного) давления измерительный Cerabar S PMP 71 зарегистрирован в Федеральном информационном фонде обеспечения единства измерений под N 41560-09;
- преобразователи (разности) давления измерительные Deltabar S PMD75, зарегистрированы в Федеральном информационном фонде обеспечения единства измерений под № 41560-09;
- термопреобразователь сопротивления платиновый TR 62, зарегистрирован в Федеральном информационном фонде обеспечения единства измерений под № 26239-06;
- манометр сигнализирующий, показывающий МП160юH, зарегистрирован в Федеральном информационном фонде обеспечения единства измерений под №47452-11;
- манометр показывающий, сигнализирующий МП100H, зарегистрирован в Федеральном информационном фонде обеспечения единства измерений под №47452-11;
- термометр ртутный, стеклянный лабораторный ТЛ-4, зарегистрирован в Федеральном информационном фонде обеспечения единства измерений под №303-91;
- контроллер измерительно-вычислительный OMNI 6000, зарегистрирован в Федеральном информационном фонде обеспечения единства измерений под № 15066-09;
 - программное обеспечение контроллера OMNI 3000/6000 имеет свидетельство №

2301-05м-2009 ФГУП ВНИИР об аттестации алгоритма и программного обеспечения средств измерений;

- Rate. автоматизированное рабочее место (APM) оператора УУН РУУН 2-07 AB (Свидетельство о метрологической аттестации № 21002-11).

Система обеспечивает выполнение следующих функций:

- автоматическое измерение массы и массового расхода сырой нефти в рабочем диапазоне расхода, (T), (T/Y);
- автоматическое измерение температуры (°C), давления (МПа) и объемной доли воды (%) в сырой нефти;
- измерение температур и давления в сырой нефти с помощью показывающих средств измерений температуры и давления соответственно;
 - автоматический и ручной отбор пробы сырой нефти;
- проведение поверки и контроля метрологических характеристик (KMX) MP с применением поверочной установки (далее ΠY);
 - проведение КМХ МР по резервно- контрольному МР;
- формирование и архивирование в автоматизированном рабочем месте оператора значений результатов измерений;
 - вывод на печать отчетных документов;
- защиту от несанкционированного доступа к изменению информации с помощью системы доступа с паролями;
- вычисление массы нетто сырой нефти с использованием результатов измерений плотности, хлористых солей и механических примесей в сырой нефти;

Для исключения возможности несанкционированного вмешательства, которое может повлиять на результат измерений, средства измерений снабжены средствами защиты в соответствии с требованиями МИ 3002-2006 "ГСИ. Рекомендация. Правила пломбирования и клеймения средств измерений и оборудования, применяемых в составе систем измерений количества и показателей качества нефти и поверочных установок".

Программное обеспечение

ПО системы (контроллеры измерительно-вычислительные ОМNI 6000, автоматизированное рабочее место (далее – APM) оператора «RATE APM-оператора РУУН 2.3-11 AB») обеспечивает реализацию функций системы. ПО системы разделено на метрологически значимую и метрологически не значимую части. Первая хранит все процедуры, функции и подпрограммы, осуществляющие регистрацию, обработку, хранение, отображение и передачу результатов измерений параметров технологического процесса, а также защиту и идентификацию ПО системы. Вторая хранит все библиотеки, процедуры и подпрограммы взаимодействия с операционной системой и периферийными устройствами (не связанные с измерениями параметров технологического процесса). Наименования ПО и идентификационные данные указаны в таблице 1.

Таблица 1 – Идентификационные данные ПО

Идентификационное наименование ПО	Номер версии (идентификацион- ный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Другие идентифи- кационные данные (если имеются)	Алгоритм вычис- ления цифрового идентификатора ПО
Контроллер измери- тельно- вычислительный ОМNI 6000	24.75.04	9111	-	CRC16

Продолжение таблицы 1

«RATE APM-				
оператора» РУУН	2.3.1.1	B6D270DB	_	CRC32
2.3-11 AB				

Защита ПО системы от непреднамеренных и преднамеренных изменений и обеспечение его соответствия утвержденному типу, осуществляется путем: разделения, идентификации, защиты от несанкционированного доступа.

Идентификация ПО системы осуществляется путем отображения на мониторе операторской станций управления структуры идентификационных данных. Часть этой структуры, относящаяся к идентификации метрологически значимой части ПО системы, представляет собой хэш-сумму (контрольную сумму) по значимым частям.

ПО системы защищено от несанкционированного доступа, изменения алгоритмов и установленных параметров путем введения логина и пароля, ведения журнала событий, доступного только для чтения. Доступ к метрологически значимой части ПО системы для пользователя закрыт. Данные, содержащие результаты измерений, защищены от любых искажений путем кодирования.

Уровень защиты ПО системы от непреднамеренных и преднамеренных изменений соответствует уровню защиты «С» по МИ 3286-2010 «Рекомендация. Проверка защиты программного обеспечения и определение ее уровня при испытаниях средств измерений в целях утверждения типа».

Метрологические и технические характеристики Таблина 2

Наименование характеристики	Значение характеристи-	
1 1	КИ	
Измеряемая среда	Нефть сырая	
	2 (1 рабочая,	
Количество измерительных линий, шт.	1 контрольно-	
	резервная)	
Диапазон расхода через систему измерений количества и		
показателей качества нефти, т/ч:		
– минимальный	0,2	
– максимальный	20,0	
Вязкость кинематическая при 50 °C, мм ² /с (сСт), не бо-		
лее	7000	
Диапазон плотности измеряемой среды, кг/м ³	от 930 до 1130	
Суммарные потери давления в системе при максимальном расходе и максимальной вязкости, МПа, не более: — при проведении измерений		
– при проведении поверки	0,2	
	0,4	
Рабочее давление, МПа:	0,1	
– минимальное	4,0	
– максимальное	1,0	
Диапазон температуры, °С	от 0 до плюс 40	
Массовая доля воды, %, не более	98,0	
Массовая концентрация хлористых солей, мг/дм ³ , не бо-	,	
лее	170000	

Продолжение таблицы 2

Массовая доля механических примесей, %, не более	0,3
Массовая доля метил- и этилмеркаптанов в сумме, млн ⁻¹ ,	
(ррт), не более	40
Содержание свободного газа, %	3,0
Пределы допускаемой относительной погрешности из-	
мерений массы сырой нефти:	±0,25 %
Пределы допускаемой относительной погрешности из-	
мерений массы нетто сырой нефти в диапазоне измерения	
объемной доли воды:	
от 0% до 5%	±0,35 %
от 5% до 10%	±0,40 %
от 10% до 20%	±1,50 %
от 20% до 50%	±2,50 %
от 50% до 70%	±5,00 %
от 70% до 85%	±15,00 %
от 85% до 98%	± 60,0 %

Знак утверждения типа

наносится в левом верхнем углу титульного листа инструкции по эксплуатации системы типографским способом.

Комплектность средства измерений

-	Система в составе согласно инструкции по эксплуатации	1экз.
-	Инструкция по эксплуатации системы	1 экз.
_	Методика поверки МП 0099-9-2013	1 экз.

Поверка

осуществляется по документу МП 0099-9-2013 «Инструкция. ГСИ. Система измерений количества и параметров нефти Студеного месторождения НГДУ «Нурлатнефть». Методика поверки», утверждённому ГЦИ СИ ФГУП «ВНИИР» 17 февраля 2013 г.

Основное поверочное оборудование:

- Установка поверки мобильная эталонная СИКН МЭУ-100-4,0: диапазон воспроизводимых массовых расходов от 5,3 до 420 т/ч; пределы допускаемой основной относительной погрешности измерений массового расхода $\pm 0,11\%$;
- калибратор температуры модели ATC 156 B, диапазон воспроизводимых температур от минус 20 до 155 °C, пределы допускаемой абсолютной погрешности \pm 0,04 °C;
- калибратор многофункциональный модели ASC 300-R: внешний модуль давления нижний предел воспроизведения давления 0 бар, верхний предел воспроизведения давления 1,03424 бар, пределы допускаемой основной погрешности \pm 0,025 % от верхнего предела измерений; внешний модуль давления нижний предел воспроизведения давления 0 бар, верхний предел воспроизведения давления 206 бар, пределы допускаемой основной погрешности \pm 0,025 % от верхнего предела измерений;
- Государственный первичный специальный эталон единицы объемного влагосодержания нефти и нефтепродуктов ГЭТ 87-2011, в составе средств измерений и вспомогательных устройств, определяемом паспортом эталона;
- устройство для поверки вторичной измерительной аппаратуры узлов учета нефти и нефтепродуктов УПВА, пределы допускаемой абсолютной погрешности воспроизведений силы постоянного тока \pm 3 мкА в диапазоне от 0,5 до 20,0 мА, пределы допускаемой относительной погрешности воспроизведений частоты и периода следования импульсов

 \pm 5×10⁻⁴ в диапазоне от 0,1 до 15000,0 Гц, пределы допускаемой абсолютной погрешности воспроизведений количества импульсов в пачке \pm 2 имп. в диапазоне от 20 до 5×10⁸ имп.

Сведения о методиках (методах) измерений

Документ «ГСИ. Масса нефти. Методика измерений системой измерений количества и параметров нефти сырой Студеного месторождения НГДУ «Нурлатнефть», (утвержденная ФГУП «ВНИИР», свидетельство об аттестации № 01.00257-2008/24209-11 от 28 декабря 2011 г. ФР.1.29.2012.11645).

Нормативные и технические документы, устанавливающие требования к системе измерений количества и параметров нефти сырой Студеного месторождения НГДУ «Нурлатнефть»

Техническая документация ООО «ЭнергоТехПроект».

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- осуществление торговли и товарообменных операций.

Изготовитель

Общество с ограниченной ответственностью «Татинтек», адрес: 423450 Россия, Республика Татарстан, г. Альметьевск, ул. Мира, д. 4 Тел.: +7 (8553) 31-47-07, +7 (8553) 31-47-97 факс: +7 (8553) 31-47-09.

Заявитель

Общество с ограниченной ответственностью «Центр метрологии и расходометрии» 423450, Республика Татарстан, г. Альметьевск, ул. Объездная, д. 5, тел.: (8553) 37-76-76 факс: (8553) 30-01-96.

Испытательный центр

Государственный центр испытаний средств измерений Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии» (ФГУП ВНИИР)

Юридический адрес: Россия, РТ, г. Казань, ул. 2-ая Азинская, д. 7 А Тел.: 8 (843) 272-70-62, факс: 8 (843) 272-00-32, e-mail: vniirpr@bk.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИР» по проведению испытаний средств измерений в целях утверждения типа № 30006-09 от 16.12.2009 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «____» _____ 2014 г.