ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Датчики весоизмерительные тензорезисторные QS, S, LS, D, PST, USB

Назначение средства измерений

Датчики весоизмерительные тензорезисторные QS, S, LS, D, PST, USB (далеедатчики) предназначены для измерений и преобразования, воздействующей на датчик силы тяжести взвешиваемого объекта, в аналоговый нормированный электрический измерительный сигнал.

Описание средства измерений

Принцип действия датчиков основан на изменении электрического сопротивления тензорезисторов, соединенных в мостовую схему, при их деформации, возникающей в местах наклейки тензорезисторов к упругому элементу датчика, под действием прилагаемой нагрузки изгиба. Изменение электрического сопротивления вызывает разбаланс мостовой схемы и появление в диагонали моста электрического сигнала, изменяющегося пропорционально нагрузке.

Датчики состоят из упругого элемента, кабеля питания и измерения, тензорезисторов на клеевой основе, соединенных по полной мостовой электрической схеме, и элементов герметизации. Места наклейки тензорезисторов и расположения элементов термокомпенсации и нормирования в датчиках находятся во внутренней полости упругого элемента и защищены крышками и герметиком.

Модификации датчиков отличаются максимальной нагрузкой. Варианты исполнения отличаются габаритными размерами, массой и материалом упругого элемента.

Датчики имеют следующее обозначение:

[1][2] - [3] [4], где:

№ п.	Обозначение	Расшифровка
[1]	QS, S, LS, D, PST, USB	обозначение модификации датчика
[2]	B, C, F, E, EB, EC, G, NB, K, P, PG, MC	обозначение варианта исполнения датчика QS
	B, BB, BE, BK, BO, BY, BI, BJ, BT, QB, QBB, QBK	обозначение варианта исполнения датчика S
	E, EE, EF, EL, CB, G	обозначение варианта исполнения датчика D
[3]	A	исполнение из обычной стали
	ASS, SS	исполнение из нержавеющей стали
[4]	20 kg 100 t	наибольший предел измерений датчиков: 20 кг 100 т

Внешний вид датчиков показан на рисунке 1.

Рисунок 1 – Внешний вид датчиков

Маркировка датчиков производится на фирменной наклейке, на которой нанесены:

- торговая марка изготовителя;
- модификация весоизмерительного датчика;
- максимальная нагрузка Е_{тах};
- серийный номер;
- знак утверждения типа.

Метрологические и технические характеристики

Класс точности по ГОСТ Р 8.726-2010, максимальное число поверочных интервалов (n_{max}) и минимальный поверочный интервал (v_{min}) приведены в таблице 1.

Таблица 1

Наименование характеристики	Значение*			
Класс точности по ГОСТ Р 8.726-2010	С			
Максимальное число поверочных интервалов, $n_{max} = E_{max} / v$	3000			
Минимальный поверочный интервал, ν_{min} , кг	$E_{max} / 10000$			
Примечание: * Метрологические характеристики приведены для предельных значений темпе-				
ратуры от минус 10 °C до плюс 40 °C.				

Таблица 2

Интервалы измерений	Пределы допускаемой погрешности тре
до 500 и вкл.	$\pm 0{,}35v$
св. 500 и до 2000 и вкл.	$\pm 0.70 v$
св. 2000v	± 1,05v

Невозврат выходного сигнала при возврате к минимальной нагрузке C_{DR} , выра	женный
через поверочный интервал v	±0,5
Относительный выходной сигнал при E_{max} , мВ/В:	
- для DG	1,8
- для QS (кроме варианта исполнений G, NB, K, MC); SQB; SQBK; DEF	3,0
- для QSP, QSPG	2,5
- для остальных	
Значения входного и выходного сопротивлений приведены в таблице 3.	,

Таблица 3

Оборнования молификации полицка	Входное	Выходное	
Обозначение модификации датчика	сопротивление, Ом	сопротивление, Ом	
QS	750 ± 10	702 ± 5	
S, LS, D, PST, USB	400 ± 20	352 ± 3	

Условия измерений:

лице 4.

- предельные значения температуры, °С от минус 10 до плюс 40
Диапазон температур работоспособности и хранения, °С от минус 40 до плюс 70
Обозначение по влажности
Максимальная нагрузка (E_{max}), габаритные размеры и масса датчиков приведены в таб-

	1	<u></u>	1			Таблица 4
Обозначе-	Обозначение		Габаритные размеры, мм,			Масса, кг,
ние моди-	варианта ис-	Максимальная нагрузка	не более		не более	
фикации	полнения дат-	(E _{max}), т	Длина	Ширина	Высота	
датчика	чика		, ,	•		
1	2	3	4	5	6	7
		5	224	135	169	8,1
	QS	10, 15, 20, 25, 30	240	135	225	13,1
	QS	40	240	135	231	16,1
		50	340	160	262	25,2
		4,7; 10; 11	165	42	50	5,8
	QSB	20	261	51	62	6,8
		22, 30, 33	261	64	75	7,5
		2,2; 4,7	207	43	43	4,9
	OSC	10, 11	207	50	50	5,7
	QSC	15, 22, 30, 33	260	76	76	7,3
		47	286	89	89	8,5
	OCE	1,0; 1,1; 1,5; 2,2	191	31	31	5,7
0.0	QSF	4,7; 11; 18	222	37	49	6,2
QS	QSE	15, 22, 30, 33	260	64	72	7,3
		11, 20, 22	210	51	64	6,5
	QSEB	30, 33	292	51	76	8,1
		47, 60	368	90	99	12,4
	QSEC	33	292	50	88	11,7
	QSG	1, 2	230	100	83	5,8
		3, 5	230	100	114	6,7
		10, 15, 20, 25, 30, 40	240	135	172	9,3
	QSNB	10, 15, 20, 25, 30	480	80	85	17,0
	QSK	10, 15, 20, 30	390	56	127	15,6
		40, 50, 60	500	86	173	21,7
	QSP, QSPG	40, 50, 60	374	160	91	13,0
		50	450	120	130	17,6
	QSMC	100	500	140	143	18,7
		0,5; 1,0; 2,0; 3,0	203	37	43	2,1
	SB	5,0; 7,5	235	48	52	3,8
		10	279	60	67	7,6
		15, 20, 25, 30	318	70	83	25,4
	SBB	0,5; 1,0; 2,0	137	37	37	1,5
	SBE	1	162	32	34	1,1
	SBK	1	130	31	30	0,8
	SBR	0,1; 0,2; 0,3	135	26	36	1,0
S		0,5; 1,0; 2,0	135	30	38	1,0
D	SBO	3, 5	170	38	48	1,1
		10	263	60	60	1,4
	SBY	1, 2, 3	182	57	50	1,7
		1, 2, 3	279	98	67	
	SDI	20		+		8,3
	CDI CDI		318	114	83	26,3
	SBI, SBJ	0,5; 1,0; 2,0; 3,0	203	37	43	2,0
	SBT	0,22; 0,55; 1,1; 1,76; 2,0; 2,2; 4,4	172	43	41	1,7

					должение	таблицы 4
1	2	3	4	5	6	7
	SQB	0,25; 0,5; 0,75; 1,0; 1,5; 2,0; 2,5 3, 5	130	32	32	0,9
		3, 5	172	38	39	1,7
S		7,5; 10	226	51	51	3,7
	SQBB	0,5; 1,0; 2,0	130	32	32	0,9
	SQBK	1,0; 2,0; 2,5	130	32	32	1,0
	SQBK	3, 5	172	38	38	1,7
LS	LS	0,05; 0,1; 0,15; 0,2; 0,25	127	18	48	0,3
LO	Lo	0,5; 1,0	127	24	48	0,4
		1	66	38	82	1,2
	DE	1,5; 2,0	70	45	86	1,8
		5	92	58	130	2,4
	DEE, DEF	0,1; 0,2; 0,25; 0,3; 0,5; 0,75; 1,0	51	26	76	1,0
		2, 3, 5	76	32	100	2,0
D	DEL	0,1; 0,2; 0,25; 0,3; 0,5; 0,75; 1,0; 1,5	70	25	80	1,7
		2, 3, 5	70	25	80	2,2
		7,5; 10	130	51	178	10,6
		15, 20	160	60	190	11,0
	DCB	40	440	110	75	14,2
	DG	1, 3, 5	190	70	30	3,5
		7,5; 15	270	120	50	13,5
PST	PST	0,02; 0,03; 0,05; 0,075; 0,1; 0,15; 0,2; 0,25; 0,3; 0,5; 0,7; 1,0	70	25	64	0,9
191		1,2; 1,5; 2,0; 2,5; 3,0; 5,0; 7,5 10	90	40	90	1,8
		10	110	50	110	3,5
USB	USB	0,15	100	50	75	1,2

Знак утверждения типа

Знак утверждения типа наносится типографским способом на титульный лист паспорта и на фирменную наклейку на корпусе датчика.

Комплектность средства измерений

- 1. Датчик с кабелем 1 шт.
- 2. Паспорт 1 экз.

Поверка

осуществляется в соответствии с приложением В «Методика поверки» ГОСТ Р 8.726-2010.

Основные средства поверки: рабочие эталоны 1-го разряда по ГОСТ Р 8.663-2009 с пределами допускаемых значений доверительных границ относительной погрешности $\delta=0.01$ %.

Сведения о методиках (методах) измерений

изложены в ГОСТ Р 8.726-2010 «Датчики весоизмерительные. Общие технические требования. Методы испытаний».

Нормативные и технические документы, устанавливающие требования к датчикам весоизмерительным тензорезисторным QS, S, LS, D, PST, USB

- 1. ГОСТ Р 8.726-2010 Датчики весоизмерительные. Общие технические требования. Методы испытаний.
- 2. ГОСТ 8.021-2005 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений массы.
- 3. Техническая документация фирмы «Keli SENSING TECHNOLOGY (Ningbo) Co., Ltd», Китай

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление торговли и товарообменных операций, выполнение государственных учетных операций в составе весов и весоизмерительных устройств

Изготовитель

Фирма «Keli SENSING TECHNOLOGY (Ningbo) Co., Ltd», г. Китай Адрес: NO. 199 Changxing Road, Jiangbei District, Ningbo, China

Тел: +86-574-87562296 Факс: +86-574-87562298 E-mail: <u>keli@kelichina.com</u> Http: www. kelichina.com

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева»

Адрес: 198005, г. Санкт-Петербург, Московский пр-кт, 19.

Тел./факс (812) 251-7601, 713-0114.

E-mail: <u>info@vniim.ru</u>
Http: <u>www.vniim.ru</u>

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «____»____2014 г.