ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы фотометрические автоматические АФА-1

Назначение средства измерений

Анализаторы фотометрические автоматические АФА-1 предназначены для определения цветности и измерения массовой концентрации ионов металлов и ПАВ в пробах питьевой, природной, технологической и очищенной сточной воды.

Описание средства измерений

Принцип действия анализаторов состоит в отборе пробы, смешении определенного количества пробы с реагентами для получения цветной реакции и последующего измерения оптической плотности полученного окрашенного раствора на рабочей длине волны. Значения массовой концентрации компонентов и цветность определяют на основе величины оптической плотности по градуировочной зависимости с помощью встроенного микропроцессора.

Анализаторы представляют собой стационарные промышленные приборы, состоящие из фотометра, насосов и клапанов гидравлического блока для подачи пробы и реагентов, а также электронно-вычислительного блока. Выпускаются в 10-и исполнениях, отличающихся набором реагентов и рабочей длиной волны фотометра.

Анализатор оснащен алфавитно-цифровым дисплеем и клавиатурой, с помощью которой осуществляется управление работой прибора, аналоговым выходом и интерфейсом RS-232, предназначенными для передачи данных на внешние устройства.

Внешний вид анализаторов АФА-1 приведен на рисунке 1.

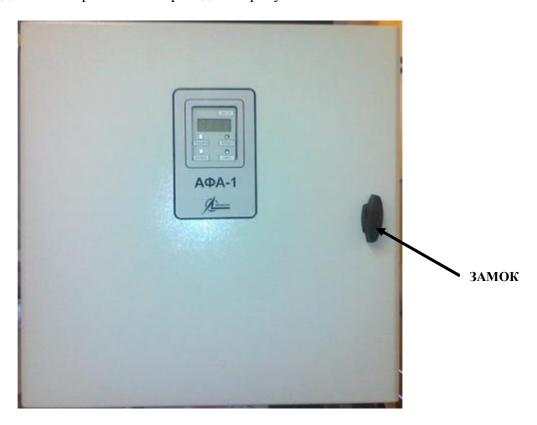


Рис.1 Анализатор АФА-1

Программное обеспечение

Анализаторы оснащены встроенным ΠO , которое управляет работой прибора и отображает, обрабатывает и хранит полученные данные. Идентификационные данные программно обеспечения приведены в таблице 1

Таблица 1

Наименование программного обеспечения	Идентификационное наименование программного обеспечения	Номер версии (идентификаци- онный номер) программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма для версии V23.11)	Алгоритм вычисления цифрового идентификатора программного обеспечения
AFA	AFA.hex	V23.11 и выше	2F0E7F48	CRC-32

Все ПО является метрологически значимым и выполняет следующие функции:

- § управление прибором;
- **§** установка режимов работы прибора;
- § измерение оптической плотности проб:
- § обработка и хранение результатов измерений
- § построение градуировочных зависимостей;
- § проведение диагностических тестов прибора.

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010. Влияние ПО на метрологические характеристики учтено при их нормировании.

Метрологические и технические характеристики

Метрологические и технические характеристики приведены в таблицах 2 и 3.

Таблица 2

Ис- пол- нение	Кодо- вое обо- значе- ние	Определяемый компонент и его размерность	Диапазон пока- заний	Диапазон из- мерений	Пределы допускаемого значения относительной погрешности (в зависимости от диапазона измерений), %	
001	CKAT-1(c)	Цветность воды по шкале ХКШ ¹ , градусы цветности	от 0 до 140	от 10 до 140	от 10 до15 св. 15 до50 св.50 до140	± 50 ± 20 ± 10
002	АЖ-2	Массовая концентрация ионов железа, мг/дм ³	от 0 до 10	от 0,05 до 10	от 0,05 до 1,0 св. 1,0 до 5,0 св. 5,0 до 10,0	± 50 ± 30 ± 20
003	AK-2	Массовая концентрация ионов кобальта (II,III), мкг/дм ³	от 0 до 1 000	от 5 до 1 000	от 5,0 до 100 св. 100 до 500 св. 500 до 1 000	± 50 ± 30 ± 20
004	AMap-2	Массовая концентрация ионов марганца (II), мкг/дм ³	от 0 до 1 000	от 5 до 1 000	от 5,0 до 100 св. 100 до 500 св. 500 до 1 000	± 50 ± 30 ± 20

¹ ХКШ – хром кобальтовая шкала

005	АМед-2	Массовая концентрация ионов меди (II), мкг/дм ³	от 0 до 100	от 5 до 100	от 5,0 до 10 св. 10 до 50 св. 50 до 100	± 50 ± 30 ± 20
006	АКад-2	Массовая кон- центрация ионов кадмия, мкг/дм ³	от 0 до 100	от 1 до 100	от 1 до 50 св. 50 до 100	± 50 ± 30
007	АСв-2	Массовая концентрация ионов свинца, мкг/дм ³	от 0 до 100	от 10 до 100	от 10 до 100	± 50
008	ФЛЮО- РАТ- АЦ-2	Массовая концентрация ионов цинка (II), кг/дм ³	от 0 до 100	от 5,0 до 100	от 5 до 100	± 50
009	ФЛЮО- РАТ- АПАВ-2	Массовая концентрация $A\Pi AB^2$, $M\Gamma/дM^3$	от 0 до 2,0	от 0,05 до 2,0	от 0,05 до 0,10 св. 0,10 до 1,0 св. 1,0 до 2,0	± 50 ± 30 ± 20
010	ФЛЮО- РАТ- КПАВ-2	Массовая концентрация $K\Pi AB^3$, $M\Gamma/дM^3$	от 0 до 1,0	от 0,05 до 1,0	от 0,05 до 0,10 св. 0,10 до 1,0	± 50 ± 30

Таблица 3

Напряжение питания переменного тока частотой 50±1 Гц, В	220^{+22} -33
Потребляемая мощность, В-А, не более	50
Габаритные размеры, мм, не более	600×600×250
Масса, кг, не более	50
Время установления рабочего режима, мин, не более	30
Время непрерывной работы без корректировки градуировки, ч, не менее	8
Продолжительность однократного измерения, мин, не более	30
Наработка на отказ, ч, не менее	20000
Средний срок службы, лет	5
Условия эксплуатации:	
-диапазон температур окружающей среды, °С	от 15 до 30
-диапазон относительной влажности (при 25 °C), %	не более 80
-диапазон атмосферного давления, кПа	от 84 до 106

Знак утверждения типа

Наносится на титульный лист Руководства по эксплуатации методом компьютерной графики и на левую стенку корпуса анализатора в виде наклейки.

Комплектность средства измерений

Комплект поставки определяется заказом и отражается в спецификации; базовый комплект включает:

- анализатор;
- руководство по эксплуатации;
- паспорт;
- комплект ЗИП;
- методику поверки МП-242-1485-2013.

² АПАВ – анионные поверхностно активные вещества.

³ КПАВ - катионные поверхностно активные вещества.

Поверка

осуществляется по документу МП-242-1485-2013 «Анализаторы фотометрические автоматические АФА-1. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева» 15.12.2013 г.

Основные средства поверки:

- 1. Стандартный образец цветности водных растворов (хром-кобальтовая шкала) ГСО 9608-2010.
- 2. Стандартные образцы состава водных растворов ионов меди Γ CO 7998-93, ионов кадмия Γ CO 6690-93, ионов цинка Γ CO 8053-94, ионов свинца Γ CO 7012-93, ионов марганца Γ CO 8056-94, ионов кобальта Γ CO 8089-94.
 - 3. Стандарт-титр раствора соли закиси железа и аммония двойной сернокислой (соль Мора) по ТУ 2642-001-33813273-97, молярная концентрация 0.05 моль/дм³ (0.05н).
 - 4. Стандартный образец состава додецилсульфата натрия (анионные ПАВ) ГСО 8049-94.
 - 5. Стандартный образец состава цетилпиридиния хлористого (анионные и катионные ПАВ) ГСО 8068-94.

Сведения о методиках (методах) измерений

Методика измерений приведена в документе «Анализаторы фотометрические автоматические АФА-1. Руководство по эксплуатации»

Нормативные и технические документы, устанавливающие требования к анализаторам фотометрическим $\mathbf{A}\mathbf{\Phi}\mathbf{A}\mathbf{-1}$

Технические условия ТУ 4215-633-59481510-2009

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

При осуществлении деятельности в области охраны окружающей среды.

Изготовитель

ООО «ЛЮМЭКС-АвтоХимКонтроль»

Юридический адрес: 192284, Санкт-Петербург, ул. Малая Балканская, д.6/1 лит. «А», пом. 4Н

Почтовый адрес: 198095, Санкт-Петербург, ул. Швецова, д.23

Тел. / факс 493-48-80; эл.почта: GRACHEVIA@LUMEX.RU

Испытательный центр

ГЦИ СИ ФГУП «ВНИИМ им. Д.И.Менделеева»

Адрес:190005, Санкт-Петербург, Московский пр., 19. Тел.: (812) 251-76-01.

Факс: (812) 713-01-14, эл.почта: info@vniim.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» по проведению испытаний средств измерений в целях утверждения типа № 30001-10 от 20.12.2010 г.

Заместитель				
Руководителя Федерального агентства				
по техническому регулированию и метрологии				Ф.В. Булыгин
	М.п.			-
		"	,,,	2014 г