ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Береговая» в границах Краснодарского края

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Береговая» в границах Краснодарского края (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, сбора, обработки, хранения и передачи полученной информации.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную трехуровневую автоматизированную систему с централизованным управлением и распределённой функцией измерения.

Измерительные каналы (далее по тексту - ИК) АИИС КУЭ включают в себя следующие уровни:

1-ый уровень - включает в себя измерительные трансформаторы тока (далее – TT) класса точности 0,2S, 0,5S, 0,2 и 0,5 по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее – TH) класса точности 0,2 и 0,5 по ГОСТ 1983-2001, счетчики активной и реактивной электроэнергии типа Альфа А1800 класса точности 0,2S и 0,5S (в части активной электроэнергии по ГОСТ 30206-94, ГОСТ Р 52323-2005), класса точности 0,5 и 1,0 (в части реактивной электроэнергии по ГОСТ 26035-83, ГОСТ Р 52425-2005), вторичные измерительные цепи и технические средства приема-передачи данных;

2-ой уровень – измерительно-вычислительный комплекс регионального Центра энергоучёта, реализован на базе устройства сбора и передачи данных (УСПД RTU-327, Госреестр № 41907-09, зав. № 006943), выполняющего функции сбора, хранения результатов измерений и передачи их на 3-ий уровень, и содержит программное обеспечение (далее – ПО) «Альфа-ЦЕНТР», с помощью которого решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов;

3-ий уровень — измерительно-вычислительный комплекс Центра сбора данных АИИС КУЭ (далее – ИВК) включает в себя: серверное оборудование (серверы сбора данных – основной и резервный, сервер управления), каналы сбора данных с уровня регионального Центра энергоучёта, каналы передачи данных субъектам оптового рынка электроэнергии и мощности (ОРЭМ).

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раза в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор данных о состоянии средств измерений во всех измерительных каналах;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;

- передача результатов измерений в заинтересованные организации;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
 - ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ).

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчиков электроэнергии. В счетчиках мгновенные значения аналоговых сигналов преобразуются в цифровые сигналы. По мгновенным значениям силы электрического тока и напряжения в микропроцессорах счетчиков вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации, которые усредняются за 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение вычисленных мгновенных значений мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков при помощи технических средств приемапередачи данных поступает на входы УСПД, где производится обработка измерительной информации (умножение на коэффициенты трансформации), сбор и хранение результатов измерений. Далее информация поступает на ИВК Центра сбора данных АИИС КУЭ.

АИИС КУЭ оснащена системой обеспечения единого времени (СОЕВ). Для синхронизации времени в системе в состав ИВК входит устройство синхронизации времени (УСВ) на основе приемника GPS типа УССВ-35LVS (35HVS). УСВ обеспечивает автоматическую синхронизацию часов сервера, при превышении порога (рассинхронизаци) \pm 1с происходит коррекция часов сервера. Часы УСПД синхронизируются при каждом сеансе связи УСПД - сервер, коррекция проводится при расхождении часов УСПД и сервера на значение, превышающее \pm 1с. Часы счетчиков синхронизируются от часов УСПД с периодичностью 1 раз в 30 минут, коррекция часов счетчиков проводится при расхождении часов счетчиков и УСПД более чем на \pm 1 с. Взаимодействие между уровнями АИИС КУЭ осуществляется по протоколу NTP по оптоволоконной связи, задержками в линиях связи пренебрегаем ввиду малости значений. Поправка часов счетчиков согласно описанию типа \pm 0,5 с, а с учетом температурной составляющей – \pm 1,5 с.

Ход часов компонентов АИИС КУЭ не превышает \pm 5 с/сут.

Программное обеспечение

Уровень ИВК Центра сбора данных содержит ПО "ЭНЕРГИЯ-АЛЬФА", включающее в себя модуль "Энергия Альфа 2". С помощью ПО "ЭНЕРГИЯ-АЛЬФА" решаются задачи автоматического накопления, обработки, хранения и отображения измерительной информации Уровень регионального Центра энергоучета содержит ПО "АльфаЦЕНТР", включающее в себя модули " АльфаЦЕНТР АРМ", " АльфаЦЕНТР СУБД "Oracle", " АльфаЦЕНТР Коммуникатор". С помощью ПО "АльфаЦЕНТР" решаются задачи коммерческого многотарифного учета расхода и прихода электроэнергии в течение заданного интервала времени, измерения средних мощностей на заданных интервалах времени, мониторинга нагрузок заданных объектов.

Таблица 1 - Сведения о программном обеспечении

Идентификационное наименование ПО	Номер вер- сии (иден- тификаци- онный но- мер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Идентификацион- ное наименование файла ПО	Алгоритм вычисления цифрового идентифика- тора ПО
1	2	3	4	5
"АльфаЦЕНТР"	4	a65bae8d7150931f811cfbc6e4c7 189d	"АльфаЦЕНТР АРМ"	MD5
"АльфаЦЕНТР"	9	bb640e93f359bab15a02979e24 d5ed48	"АльфаЦЕНТР СУБД "Oracle""	MD5
"АльфаЦЕНТР"	3	3ef7fb23cf160f566021bf19264 ca8d6	"АльфаЦЕНТР Коммуникатор"	MD5
"ЭНЕРГИЯ- АЛЬФА"	2.0.0.2	17e63d59939159ef304b8ff6312 1df60	"Энергия Альфа 2"	MD5

ПО ИВК «АльфаЦЕНТР» не влияет на метрологические характеристики системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Береговая» в границах Краснодарского края.

Метрологические характеристики ИК АИИС КУЭ, указанные в таблицах 3, 4 нормированы с учетом Π O.

Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Состав 1-го и 2-го уровней системы автоматизированной информационноизмерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Береговая» в границах Краснодарского края приведен в таблице 2.

Таблица 2 - Состав 1-го и 2-го уровней АИИС КУЭ

	Наименование объ-	Coe	став 1-го и 2-го ур	овней АИИС КУЗ)	Вид
№ИК	к екта Трансформатор тока		Трансформатор напряжения	Счётчик	УСПД	электро- энергии
1	2	3	4	5	6	7
1	тяговая подстанция 110 кВ Береговая Ввод 110 кВ ПТ1	VIS WI кл. т 0,2S Ктт = 600/5 Зав. № 1106933 10, 1106933 11, 1106933 12 Госреестр № 37750- 08	SU 170/S кл. т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 11/110486, 11/110488, 11/110497 Госреестр № 37115-08	A1802RAL-P4GB-DW-4 кл. т 0,2S/0,5 Зав. № 01248242 Госреестр № 31857-11		активная реактивная
2	тяговая подстанция 110 кВ Береговая Ввод 110 кВ ПТ2	VIS WI кл. т 0,2S Ктт = 600/5 Зав. № 1106933 01, 1106933 07, 1106933 08 Госреестр № 37750- 08	SU 170/S кл. т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 11/110482, 11/110490, 11/110499 Госреестр № 37115-08	A1802RAL-P4GB-DW-4 кл. т 0,2S/0,5 Зав. № 01248244 Госреестр № 31857-11	RTU-327 зав. № 006943 Госреестр № 41907-09	активная реактивная
3	тяговая подстанция 110 кВ Береговая ТСН-1 10 кВ	ТЛП-10-6 кл. т 0,5 Ктт = 100/5 Зав. № 39095, 39096 Госреестр № 30709-	ЗНОЛП кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 1009841, 1010085, 1010212 Госреестр № 23544-07	A1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248262 Госреестр № 31857-11		активная реактивная

Продолжение таблицы 2

1	олжение таолицы 2 2	3	4	5	6	7
4	тяговая подстанция 110 кВ Береговая Ввод 1 10 кВ	ТЛП-10-6 кл. т 0,5S Ктт = 1500/5 Зав. № 39123, 39121, 39124 Госресстр № 30709- 11	ЗНОЛП кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 1009841, 1010085, 1010212 Госреестр № 23544-07	А1805RAL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248246 Госреестр № 31857-11		активная реактив- ная
5	тяговая подстанция 110 кВ Береговая Ввод 2 10 кВ	ТЛП-10-6 кл. т 0,5S Ктт = 1500/5 Зав. № 39119, 39122, 39120 Госреестр № 30709-	3HOЛП кл. т 0,5 Ктн = (10000√3)/(100/√3) Зав. № 1009873, 1009701, 1009543 Госреестр № 23544-07	А1805RAL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248250 Госреестр № 31857-11		активная реактивная
6	тяговая подстанция 110 кВ Береговая Фидер-1 10 кВ	ТЛП-10-6 кл. т 0,5S Ктт = 100/5 Зав. № 39108, 39107 Госреестр № 30709- 11	ЗНОЛП кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 1009841, 1010085, 1010212 Госреестр № 23544-07	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01214679 Госреестр № 31857-11		активная реактивная
7	тяговая подстанция 110 кВ Береговая Фидер-3 10 кВ	ТЛП-10-6 кл. т 0,5S Ктт = 100/5 Зав. № 39104, 39103 Госреестр № 30709-	ЗНОЛП кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 1009841, 1010085, 1010212 Госреестр № 23544-07	A1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248264 Госреестр № 31857-11	RTU-327 зав. № 006943 Госреестр № 41907-09	активная реактивная
8	тяговая подстанция 110 кВ Береговая Фидер ПЭ-5	ТЛП-10-6 кл. т 0,5S Ктт = 150/5 Зав. № 39112, 39116 Госреестр № 30709- 11	ЗНОЛП-ЭК-10 кл. т 0,2 Ктн = (10000/√3)/(100/√3) Зав. № 30769, 30767, 30768 Госреестр № 40014-08	A1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248252 Госреестр № 31857-11		активная реактивная
9	тяговая подстанция 110 кВ Береговая Фидер ПЭ-3	ТЛП-10-6 кл. т 0,5S Ктт = 150/5 Зав. № 39115, 39111 Госреестр № 30709- 11	ЗНОЛП-ЭК-10 кл. т 0,2 Ктн = (10000/√3)/(100/√3) Зав. № 30769, 30767, 30768 Госреестр № 40014-08	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248260 Госреестр № 31857-11		активная реактивная
10	тяговая подстанция 110 кВ Береговая Фидер ПЭ-1	ТЛП-10-6 кл. т 0,5S Ктт = 150/5 Зав. № 39118, 39109 Госреестр № 30709- 11	ЗНОЛП-ЭК-10 кл. т 0,2 Ктн = (10000/√3)/(100/√3) Зав. № 30769, 30767, 30768 Госреестр № 40014-08	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248254 Госреестр № 31857-11		активная реактивная

Продолжение таблицы 2

<u>11род</u>	олжение таблицы 2	3	4	5	6	7
11	тяговая подстанция 110 кВ Береговая ЛЭП АБ (СЦБ) 0,4 кВ	ТСН-6 кл. т 0,5S Ктт = 400/5 Зав. № 3904, 3903 Госреестр № 26100- 03	-	A1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248256 Госреестр № 31857-11		, активная реактивная
12	тяговая подстанция 110 кВ Береговая ТСН-2 10 кВ	ТЛП-10-6 кл. т 0,5 Ктт = 1500/5 Зав. № 39097, 39098 Госреестр № 30709- 11	ЗНОЛП кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 1009873, 1009701, 1009543 Госреестр № 23544-07	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248251 Госреестр № 31857-11		активная реактивная
13	тяговая подстанция 110 кВ Береговая Фидер-2 10 кВ	ТЛП-10-6 кл. т 0,5S Ктт = 100/5 Зав. № 39105, 39102 Госреестр № 30709-	ЗНОЛП кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 1009873, 1009701, 1009543 Госреестр № 23544-07	A1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248263 Госреестр № 31857-11		активная реактивная
14	тяговая подстанция 110 кВ Береговая Фидер-4 10 кВ	ТЛП-10-6 кл. т 0,5S Ктт = 100/5 Зав. № 39101, 39106 Госреестр № 30709- 11	ЗНОЛП кл. т 0,5 Ктн = (10000/√3)/(100/√3) Зав. № 1009873, 1009701, 1009543 Госреестр № 23544-07	A1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248253 Госреестр № 31857-11	RTU-327 зав. № 006943 Госреестр № 41907-09	активная реактивная
15	тяговая подстанция 110 кВ Береговая Фидер ПЭ-4	ТЛП-10-6 кл. т 0,5S Ктт = 150/5 Зав. № 39113, 39114 Госреестр № 30709- 11	ЗНОЛП-ЭК-10 кл. т 0,2 Ктн = (10000/√3)/(100/√3) Зав. № 30769, 30767, 30768 Госреестр № 40014-08	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248259 Госреестр № 31857-11		активная реактивная
16	тяговая подстанция 110 кВ Береговая Фидер ПЭ-2	ТЛП-10-6 кл. т 0,5S Ктг = 150/5 Зав. № 39110, 39117 Госреестр № 30709- 11	ЗНОЛП-ЭК-10 кл. т 0,2 Ктн = (10000√3)/(100/√3) Зав. № 30769, 30767, 30768 Госреестр № 40014-08	А1805RL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248261 Госреестр № 31857-11		активная реактивная
17	тяговая подстанция 110 кВ Береговая Ввод 1 27,5 кВ	ТЛО-35 кл. т 0,5S Ктт = 1200/5 Зав. № 19399, 19405 Госреестр № 36291- 11	ТЈС7 кл. т 0,5 Ктн = (27500/√3)/(100/√3) Зав. № 1VLT5211013173, 1VLT5211013175 Госреестр № 25430-08	А1805RAL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248248 Госреестр № 31857-11		активная реактивная

Продолжение таблицы 2

1	2	3	4	5	6	7
18	тяговая подстанция 110 кВ Береговая Ввод 2 27,5 кВ	ТЛО-35 кл. т 0,5S Ктт = 1200/5 Зав. № 19402, 19400 Госреестр № 36291- 11	ТЈС7 кл. т 0,5 Ктн = (27500/√3)/(100/√3) Зав. № 1VLT5211013169, 1VLT5211016808 Госреестр № 25430-08	А1805RAL-P4G-DW-4 кл. т 0,5S/1,0 Зав. № 01248249 Госреестр № 31857-11		активная реактивная
19	тяговая подстанция 110 кВ Береговая Рабочая перемычка КРУ-110 кВ	VIS WI кл. т 0,2S Ктт = 600/5 Зав. № 1106932 16, 1106932 17, 1106932 18 Госреестр № 37750- 08	SU 170/S кл. т 0,2 Ктн = (110000/√3)/(100/√3) Зав. № 11/110486, 11/110488, 11/110497 Госреестр № 37115-08	А1802RAL-P4GB-DW-4 кл. т 0,2S/0,5 Зав. № 01248243 Госреестр № 31857-11	RTU-327 зав. № 006943 Госреестр № 41907-09	активная реактивная
20	тяговая подстанция 110 кВ Береговая Ремонтная перемычка КРУ-110 кВ	VIS WI KJL. T 0,2S KTT = 600/5 3as. № 1106932 12, 1106932 13, 1106932 15 Госреестр № 37750- 08	SU 170/S кл. т 0,2 КТН = (110000/√3)/(100/√3) Зав. № 11/110482, 11/110490, 11/110499 Госреестр № 37115-08	A1802RAL-P4GB-DW-4 кл. т 0,2S/0,5 Зав. № 01248245 Госреестр № 31857-11		активная реактивная

Таблица 3– Метрологические характеристики ИК (активная энергия)

Tuosingu 5 Wierposio	Пределы допускаемой относительной погрешности ИК						
		при измерении активной электрической энергии в рабочих услови-					
Номер ИК	cosφ	ях эксплуатации АИИС КУЭ					
•		δ _{1(2) %} ,	δ _{5 %} ,	δ _{20 %} ,	δ _{100 %} ,		
		$I_{1(2)} \% \le I_{\text{M3M}} < I_{5} \%$			$I_{100} \% \le I_{\text{изм}} \le I_{120} \%$		
	1,0	±1,2	±0,8	±0,7	±0,7		
1, 2, 19, 20	0,9	±1,3	±0,9	±0,8	±0,8		
(TT 0,2S; TH 0,2;	0,8	±1,4	±1,0	±0,8	±0,8		
Сч 0,2S)	0,7	±1,6	±1,1	±0,9	±0,9		
	0,5	±2,1	±1,4	±1,1	±1,1		
	1,0	-	±2,2	±1,7	±1,5		
3, 12	0,9	-	±2,6	±1,8	±1,7		
(TT 0,5; TH 0,5;	0,8	-	±3,2	±2,1	±1,8		
Сч 0,5S)	0,7	-	±3,8	±2,4	±2,0		
	0,5	-	±5,7	±3,3	±2,6		
4 – 7, 13, 14, 17,	1,0	±2,4	±1,7	±1,5	±1,5		
18	0,9	±2,8	±1,9	±1,7	±1,7		
(TT 0,5S; TH 0,5;	0,8	±3,3	±2,1	±1,8	±1,8		
	0,7	±3,9	±2,5	±2,0	±2,0		
Сч 0,5S)	0,5	±5,7	±3,4	±2,6	±2,6		
	1,0	±2,4	±1,6	±1,5	±1,5		
8-10, 15, 16	0,9	±2,8	±1,8	±1,6	±1,6		
(TT 0,5S; TH 0,2;	0,8	±3,2	±2,0	±1,7	$\pm 1,7$		
Сч 0,5S)	0,7	±3,8	±2,4	±1,9	±1,9		
	0,5	±5,6	±3,3	±2,4	±2,4		
	1,0	±2,4	±1,6	±1,4	±1,4		
11	0,9	±2,8	±1,8	±1,5	±1,5		
(TT 0,5S; C4 0,5S)	0,8	±3,2	±2,0	±1,7	±1,7		
(110,55, C40,55)	0,7	±3,8	±2,3	±1,8	±1,8		
	0,5	±5,6	±3,2	±2,3	±2,3		

Таблица 4 – Метрологические характеристики ИК (реактивная энергия)

Tuotinga : Titotposis	TIT TOOK	Пределы допускаемой относительной погрешности ИК					
11 111/		при измерении реактивной электрической энергии в рабочих усло-					
Номер ИК	cosφ		виях эксплуатаци				
		$\delta_{1(2)}$ %,	$\delta_{5\%},$	$\delta_{20\%},$	$\delta_{100~\%}$,		
		$I_{1(2)} \% \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{M3M} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{\text{изм}} \le I_{120 \%}$		
1, 2, 19, 20	0,9	±5,6	±2,1	±1,5	±1,4		
(TT 0,2S; TH 0,2;	0,8	±4,3	±1,7	±1,2	±1,2		
Сч 0,5)	0,7	±3,7	±1,6	±1,1	±1,1		
C4 0,3)	0,5	±3,2	±1,4	±1,1	±1,1		
3, 12	0,9	-	±7,2	±4,0	±3,1		
(TT 0,5; TH 0,5;	0,8	-	±5,2	±3,1	±2,6		
Сч 1,0)	0,7	-	±4,3	±2,7	±2,3		
C4 1,0)	0,5	-	±3,5	±2,3	±2,1		
4 – 7, 13, 14, 17,	0,9	±12,1	±4,8	±3,3	±3,1		
18	0,8	±9,0	±3,7	±2,7	±2,6		
(TT 0,5S; TH 0,5;	0,7	±7,7	±3,3	±2,4	±2,3		
Сч 1,0)	0,5	±6,5	±2,9	±2,2	±2,1		
8 – 10, 15, 16	0,9	±12,0	±4,6	±3,0	±2,9		
(TT 0,5S; TH 0,2;	0,8	±9,0	±3,6	±2,5	±2,4		
Сч 1,0)	0,7	±7,7	±3,2	±2,3	±2,2		
	0,5	±6,5	±2,8	±2,1	±2,1		
	0,9	±12,0	±4,6	±3,0	±2,8		
11	0,8	±9,0	±3,6	±2,4	±2,3		
(ТТ 0,5S; Сч 1,0)	0,7	±7,7	±3,2	±2,2	±2,2		
	0,5	±6,4	±2,8	±2,1	±2,0		

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi < 1,0$ нормируется от $I_{2\%}$..
- 2. Характеристики относительной погрешности ИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
- 4. Нормальные условия эксплуатации:
 - параметры сети: диапазон напряжения от $0.98 \cdot \text{U}$ ном до $1.02 \cdot \text{U}$ ном; диапазон силы тока от Іном до $1.2 \cdot \text{I}$ ном, $\cos \phi = 0.9$ инд; частота (50 ± 0.15) Γ ц;
 - температура окружающего воздуха: ТТ и TH от минус 40° С до плюс 50° С; счетчиков от плюс 18° С до плюс 25° С; УСПД от плюс 10° С до плюс 30° С; ИВК от плюс 10° С до плюс 30° С;
 - магнитная индукция внешнего происхождения, не более 0,05 мТл.
- 5. Рабочие условия эксплуатации:

Для TT и TH:

- параметры сети: диапазон первичного напряжения от 0,9·Uн1 до 1,1 Uн1; диапазон силы первичного тока от 0,01 Iн1 до 1,2 Iн1; частота $(50 \pm 0,4)$ Γ ц;
- температура окружающего воздуха от минус 30°C до плюс 35°C.
- Для электросчетчиков:
- для счётчиков электроэнергии Альфа A1800 от минус 40°C до плюс 65 °C;
- параметры сети: диапазон вторичного напряжения от 0,9 UH2 до 1,1 UH2;
- сила тока от 0,05 Іном до 1,2 Іном для ИК № 3, и от 0,01 Іном до 1,2 Іном для ИК №№ 1, 2, 4 20:
- частота (50 ± 0.4) Гц;
- магнитная индукция внешнего происхождения, не более 0,5 мТл.

6. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Допускается замена УСПД на однотипный утвержденного типа. Замена оформляется актом в установленном на подстанции ОАО "РЖД" порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть. Порядок оформления замены измерительных компонентов, а также других изменений, вносимых в АИИС КУЭ в процессе их эксплуатации после утверждения типа в качестве единичного экземпляра, осуществляется согласно Приложению Б МИ 2999-2011.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

- счетчики электроэнергии Альфа A1800 среднее время наработки на отказ не менее 120000 часов;
 - УСПД (RTU-327) среднее время наработки на отказ не менее 40000 часов;
 - УССВ-35HVS среднее время наработки на отказ не менее 35000 часов;
 - ИВК среднее время наработки на отказ не менее 70000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчиков Тв ≤ 2 часа;
- для УСПД Тв ≤ 1 час;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ АЭС от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют возможность пломбирования;
- на счетчики предусмотрена возможность пломбирование крышки зажимов и откидывающейся прозрачной крышки на лицевой панели счетчиков;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, серверах, APM;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и разграничение прав доступа;
- защита результатов измерений при передаче информации (возможность использования цифровой подписи).

Наличие фиксации в журнале событий счетчиков следующих событий:

- фактов параметрирования счетчиков;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- серверах, АРМ (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии и "Альфа А1800" до 30 лет при отсутствии питания;
- УСПД RTU-327 Хранение данных при отключении питания не менее 5 лет;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 5

Таблица 5 - Комплектность АИИС КУЭ

Наименование	Обозначение (Тип)	Кол-во, шт.
Трансформатор тока	VIS WI	12
Трансформатор тока	ТЛП-10-6	28
Трансформатор тока	ТЛО-35	4
Трансформатор тока	ТСН-6	2
Трансформатор напряжения	SU 170/S	6
Трансформатор напряжения	3НОЛП	6
Трансформатор напряжения	ЗНОЛП-ЭК-10	3
Трансформатор напряжения	TCJ7	4
Счётчик электрической энергии	A1802RAL-P4GB-DW-4	4
Счётчик электрической энергии	A1805RAL-P4G-DW-4	4
Счётчик электрической энергии	A1805RL-P4G-DW-4	12
Источник бесперебойного питания	APC Black-Smart-UPS 1000 USB RM 2U, APC Smart-UPS 2200 VA RM 3U Black	1
Сервер базы данных (основной)	HP ML-570 зав. № CZB2564LKN	1
Приемник устройства синхронизации времени	YCCB-35HVS	1
Устройство сбора и передачи данных	RTU-327	1
Шлюз-концентратор	ШК-2 ТП	1
Программина облагачатия	«АльфаЦЕНТР»	1
Программное обеспечения	«ЭНЕРГИЯ-АЛЬФА»	1
Методика поверки	МП 1715/550-2013	1
Паспорт-формуляр	499/10-652-06.35-КНМУ.411711.085.ПФ	1

Поверка

осуществляется по документу МП 1715/550-2013 "ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Береговая» в границах Краснодарского края». Методика поверки", утвержденному ГЦИ СИ ФБУ «Ростест-Москва» в октябре 2013 г. Основные средства поверки:

- для трансформаторов тока по ГОСТ 8.217-2003;
 - для трансформаторов напряжения по ГОСТ 8.216-2011;

- для счетчиков Альфа A1800 в соответствии с документом МП-2203-0042-2006 « Счетчики электрической энергии трехфазные многофункциональные Альфа A1800. Методика поверки», утвержденным ГЦИ СИ «ВНИИМС им. Д. И. Менделеева» в мае 2006 г.;
- для УСПД RTU-327 по документу «Устройства сбора и передачи данных серии RTU 327. Методика поверки. ДЯИМ.466215.007 МП», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2009 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиковми системы, ПО для работы с радиочасами МИР РЧ-01.

Сведения о методиках (методах) измерений

«Методика (методы) измерений количества электрической энергии с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Береговая» в границах Краснодарского края». Аттестована ФБУ «Ростест-Москва». Свидетельство об аттестации методики измерений № 1317/550-01.00229.2013 от 11.10.2013 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ОАО «РЖД» тяговая подстанция 110 кВ «Береговая» в границах Краснодарского края:

- 1. ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2. ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3. ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4. ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5. ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.
- 6. ГОСТ Р 52323-2005 (МЭК 62053-22:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0.2S и 0.5S".
- 7. ГОСТ Р 52425-2005 (МЭК 62053-23:2003) "Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

Открытое акционерное общество "Российские Железные Дороги"

(ОАО "РЖД")

Юридический адрес: 107174, г. Москва, Новая Басманная ул., д. 2

Тел.: (499) 262-60-55 Факс: (499) 262-60-55 e-mail: <u>info@rzd.ru</u> <u>http://www.rzd.ru/</u>

Заявитель

ДКРС-Сочи ОАО «РЖД» - обособленное структурное подразделение ДКРС ОАО «РЖД»

Юридический адрес: 107174, г. Москва, Новая Басманная ул., д. 2

Почтовый адрес: 354000 г. Сочи, ул. Московская, д. 22

Тел.: (8622) 90-25-01 Факс: (8622) 90-25-30

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москва» (ФБУ «Ростест-Москва»)

117418, г. Москва, Нахимовский проспект, д. 31 Тел.: 8(495) 544-00-00, 668-27-40, (499) 129-19-11

Факс: (499) 124-99-96

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

			Ф.В. Булыгин
М.п.	"	"	2013 г