ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Комплект видеосветового оборудования для контроля внутренней геометрии (КВО КВГ)

Назначение средства измерений

Комплект видеосветового оборудования для контроля внутренней геометрии (далее по тексту - КВО КВГ) предназначен для измерения радиуса, высоты и углов контейнера трюмного подъемника (далее по тексту - КТП) заказов «Борей», «Борей-А» и «Акула-У» с целью определения пригодности КТП для погрузки изделия 3М-30.

Описание средства измерений

Принцип действия КВО КВГ основан на видеоизмерении с компьютерной обработкой изображения внутренней поверхности КТП в видеокадре стандартного телевизионного видеосигнала, освещенной узким пучком света кругового источника света (далее по тексту - КИС). Изображение содержится в стандартном телевизионном видеосигнале, формируемом видеодатчиком на основе сигналов ПЗС-матрицы.

Конструктивно комплект КВО КВГ состоит из:

- видеоконтрольного устройства, пошагово перемещаемого внутри КТП,
- устройства перемещения, закрепленного на установочном оборудовании, которое в свою очередь, закреплено на опорном основании КТП.

Видеоконтрольное устройство смонтировано на металлической раме, в верхней части которой установлен видеодатчик, а в нижней – круговой источник света. В средней части рамы установлены визирные марки и осветитель светодиодный.

Устройство перемещения связывается с рабочим местом оператора с помощью кабеля КБ5 длиной 50 м. Видеоконтрольное устройство перемещается внутри КТП по направляющим с помощью троса, связанного с шаговым электроприводом, установленным в устройстве перемещения.

Устройство перемещения содержит микроконтроллер для управления шаговым двигателем, видеодатчик, преобразователи постоянного тока, шаговый электродвигатель, концевые выключатели и разъемы.

Управление шаговым двигателем осуществляется посредством СОМ-порта компьютера и кабеля. При срабатывании концевых выключателей происходит остановка шагового двигателя. В поле зрения видеодатчика находятся визирные марки, установленные в видеоконтрольном устройстве.

Рисунок 1 – Общий вид комплекта видеосветового оборудования для контроля внутренней геометрии (КВО КВГ)

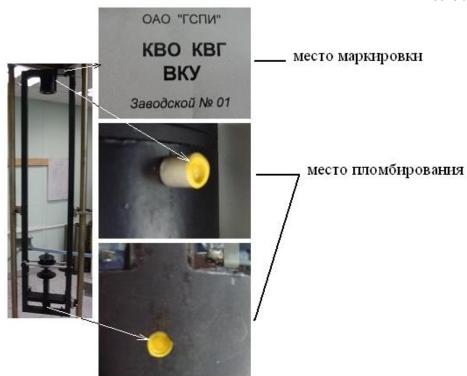


Рисунок 2 – Места нанесения маркировки и пломбирования

Программное обеспечение

Программное обеспечение (далее по тексту - ПО), входящее в состав комплекта видеосветового оборудования для контроля внутренней геометрии (КВО КВГ), выполняет функции управления процессом измерения, вычисления искомых параметров и их отображения на экране монитора ПК.

ПО функционирует в среде Win XP во взаимодействии с программой-драйвером контроллера VS-2001/TV производства НПЦ «Видеоскан».

Достоверность результатов измерений проверяется с помощью контрольных измерений, выполняемых по четырем сегментам, закрепленным на установочном оборудовании, геометрические характеристики которых предоставляются Заказчиком.

Таблица 1

Идентификационное	Номер	Цифровой идентификатор	Алгоритм
наименование ПО	версии ПО	ПО (контрольная сумма	вычисления цифрового
		исполняемого кода)	идентификатора ПО
КВО КВГ	1 и выше	-	-

Защита ПО от преднамеренных и непреднамеренных воздействий соответствует уровню «А».

Метрологические и технические характеристики

Таблица 2

Наименование характеристики	Значение характеристики
Диапазон измерения радиуса (радиальные параметры), мм	1065-1185
Пределы допускаемой абсолютной погрешности измерения	±3
радиальных параметров, мм Диапазон измерения высоты (продольные параметры), мм	100-10000
Пределы допускаемой абсолютной погрешности измерения	±9
продольных параметров, мм	
Диапазон измерения углов (угловые параметры), градусы	0-360

	Всего листов 5			
Пределы допускаемой абсолютной погрешности измерения	±45			
угловых параметров, минуты				
Пределы допускаемой абсолютной погрешности установки	0.5			
базовых осей опорного основания относительно плоскостей I-III	±0,5			
при насадке на направляющую шпонку и штырь, минуты				
Электропитание аппаратуры, установленной на КТП:				
напряжение, В;	24			
ток, А.	3			
Электропитание шагового привода:				
напряжение, В;	24			
ток, А.	3			
Общая потребляемая мощность от промышленной сети	0,5			
переменного тока 220 В/50 Гц, не более, кВ-А	0,3			
Основные параметры объектива LM3NC1M				
Фокусное расстояние, мм	3,5			
Разрешение в центре, линий/мм	120			
Дисторсия, %	0,4			
Основные параметры модульной видеокамеры WAT-902HB2S				
Горизонтальный и вертикальный размеры пикселя, мкм	8,6×8,3			
Число эффективных горизонтальных и вертикальных пикселей, шт	752×582			
Масса составляющих элементов КВО КВГ, кг, не более:				
видеоконтрольное устройство	35			
устройство перемещения	60			
установочное оборудование видеокомплекта	500			
Габариты составляющих элементов КВО КВГ				
Установочное оборудование (Д×Ш×В), мм, не более	2665×2665×2396			
Устройство перемещения (Д×Ш×В), мм, не более	1400×680×230			
Видеоконтрольное устройство (Д×Ш×В), мм, не более	175×710×2140			
Условия эксплуатации в рабочем диапазоне температур, °С				
Рабочее место оператора	5-35			
Видеоконтрольное устройство	минус 20-40			
Установочное оборудование	минус 20-40			

Знак утверждения типа

наносят типографским способом на титульном листе руководства по эксплуатации Э-443.00.000 РЭ и методом наклеивания на корпус комплекса.

Комплектность средства измерений

Таблица 3

Наименование	Количество, шт.
Комплект видеосветового оборудования для контроля внутренней	1
геометрии (КВО КВГ)	
Рабочее место оператора Э-443.01.000-01	1
Руководство по эксплуатации Э-443.00.000 РЭ	1
Формуляр	1
Ящик упаковочный	3
Установочное оборудование БЛИЦ.301319.177	1
Транспортировочная тара видеокомплекта БЛИЦ.323419.001	1
Укладчик кабеля Э-443.03.400-01	1
Методика поверки МП 50.Д4-13	1

Поверка

осуществляется по документу МП 50.Д4-13 «Комплект видеосветового оборудования для контроля внутренней геометрии (КВО КВГ). Методика поверки», утвержденному ГЦИ СИ Φ ГУП «ВНИИО Φ И» 01 августа 2013г.

Основные средства поверки:

1 Электронный тахеометр Leica TM30

Основные метрологические характеристики:

Диапазон измерений расстояний:

отражательный режим (1 призма) от 1,5 до 3500 м;

безотражательный режим от 1,5 до 1000 м.

Допускаемое СКО измерений расстояний, %:

отражательный режим (1 призма) $(0.6+1x10^{-6}xD)$ мм;

безотражательный режим:

для расстояний менее $500 \text{ м} (2+2x10^{-6}xD) \text{ мм};$

для расстояний более $500 \text{ м} (4+2x10^{-6}xD) \text{ мм}$;

Диапазон измерений углов от 0 до 360° .

Допускаемое СКО измерений углов, %, 0,05.

2 Квадрант оптический КО-10

Основные метрологические характеристики:

Диапазон измерений углов от 0 до 360°

Пределы допускаемой погрешности измерений углов, ±10 секунд.

3 Горизонтальный компаратор ИЗА-8

Основные метрологические характеристики:

Пределы допустимой абсолютной погрешности измерения длины объекта в диапазоне от 0 до 200 мм, ± 0.005 мм.

Сведения о методиках (методах) измерений

«Комплект видеосветового оборудования для контроля внутренней геометрии (КВО КВГ). Руководство по эксплуатации Э-443.00.000 РЭ» раздел 1.5.4.

Нормативные и технические документы, устанавливающие требования к комплекту видеосветового оборудования для контроля внутренней геометрии (КВО КВГ)

Комплект видеосветового оборудования для контроля внутренней геометрии (КВО КВГ). Технические условия ТУ Э-443.00.000.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

при выполнении работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Открытое акционерное общество «Государственный специализированный проектный институт» (ОАО «ГСПИ»)

Адрес: 107078, г. Москва, ул. Новорязанская, д. 8а Тел./факс: +7 (495) 988-80-50, +7(495) 261-72-64

E-mail: info@aoagspi.ru

www.oaogspi.ru

Испытательный центр

Государственный центр испытаний средств измерений федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт оптикофизических измерений» (ГЦИ СИ ФГУП «ВНИИОФИ»)

Адрес: 119361, Москва, ул. Озерная, 46.

Телефон: (495) 437-56-33; факс: (495) 437-31-47

E-mail: vniiofi@vniiofi.ru

Аттестат аккредитации ГЦИ СИ ФГУП «ВНИИОФИ», по проведению испытаний средств измерений в целях утверждения типа № 30003-08 от 30.12.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В. Булыгин

М.п. «__» _____ 2013 г.