ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОРЕСУРС» для электроснабжения ООО «СМНП Козьмино»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОРЕСУРС» для электроснабжения ООО «СМНП Козьмино» (далее по тексту - АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, автоматизированного сбора, хранения и обработки данных об измерениях активной и реактивной электроэнергии, а также формирования отчетных документов и передачи информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

Описание средства измерений

АИИС КУЭ представляет собой двухуровневую автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные каналы (ИИК) АИИС КУЭ состоят из двух уровней:

1-ый уровень – измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи и технические средства приема-передачи данных.

2-ой уровень – информационно-вычислительный комплекс (ИВК), включающий в себя сервер ООО «РУСЭНЕРГОРЕСУРС», устройство синхронизации системного времени (УССВ) Метроника МС225, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

АИИС КУЭ решает следующие основные задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в 30 мин) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений в организации-участники ОРЭМ;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (синхронизация часов АИИС КУЭ);
- сбор, хранение и передачу журналов событий счетчиков.

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Цифровой сигнал с выходов счетчиков посредством технических средств приемапередачи данных поступает на сервер ООО «РУСЭНЕРГОРЕСУРС», где при помощи программного обеспечения (ПО) АльфаЦЕНТР производится обработка измерительной информации (вычисление значений электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН), ее хранение, накопление и отображение, подготовка отчетных документов, а также дальнейшая передача информации в ОАО «АТС», ОАО «СО ЕЭС» и прочим заинтересованным организациям в рамках согласованного регламента.

АИИС КУЭ ООО «РУСЭНЕРГОРЕСУРС» для электроснабжения ООО «СМНП Козьмино» оснащена системой обеспечения единого времени (СОЕВ). Для обеспечения единства измерений используется единое календарное время.

В СОЕВ входят часы устройства синхронизации системного времени (УССВ) Метроника МС225, часы счетчиков и сервера АИИС КУЭ.

Сравнение показаний часов сервера АИИС КУЭ и УССВ происходит с цикличностью один раз в секунду. Синхронизация осуществляется при расхождении показаний часов сервера АИИС КУЭ и УССВ на величину более $\mbox{чем} \pm 1$ с.

Сравнение показаний часов счетчика и сервера АИИС КУЭ осуществляется с цикличностью один раз в 30 мин. Синхронизация осуществляется при расхождении показаний часов счетчиков и сервера АИИС КУЭ на величину более чем ± 1 с.

Программное обеспечение

В состав ПО АИИС КУЭ входит: ПО счетчиков электроэнергии и ПО сервера. Программные средства сервера АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных и прикладное ПО АльфаЦЕНТР.

Состав программного обеспечения уровня ИВК АИИС КУЭ приведён в таблице 1.

Таблица 1

Наименование	Идентификационное на-	Номер версии	Цифровой идентификатор	Алгоритм вы-	
программного	именование программно-	(идентификацион-	программного обеспечения	числения циф-	
обеспечения	го обеспечения	ный номер) про-	(контрольная сумма испол-	рового иденти-	
		граммного обеспе-	няемого кода)	фикатора про-	
		чения		граммного	
				обеспечения	
1	2	3	4	5	
	АльфаЦЕНТР	2010.0.0	C1E6B5612533B2DFF4F1FC		
ПО Альфа- ЦЕНТР	ifrun60.EXE	2010.9.0.0	FADCE1E273		
	АльфаЦЕНТР		TTD 0 GD 2 4 64 TTD 4 T 2 4 6 4 TD	MD5	
	Коммуникатор	3.27.2.0	FEB0CD34617F7AF346A7B		
	trtu.exe		5A71FA7CA76		

Продолжение таблицы 1

	2	3	4		
1	АльфаЦЕНТР Мониторинг ACMonitor.exe	2.3.0.0	E3D36F83BC58209659CA7F EEAAE14FF3		
	АльфаЦЕНТР Генератор отчетов XMLConfig.exe	2.10.0.0	F5E35DB02649779ED0B076 6BF4410A2F	MD5	
	АльфаЦЕНТР диспетчер Заданий ACTaskManager.exe	2.0.4.41	77346AB17571B89501F0BA 5ABBEB973E		
	АльфаЦЕНТР Утилиты ACUtils.exe	2.5.11.140	467ABA0B5AECD026B8ED 56E7651E4371		

Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав ИИК АИИС КУЭ приведен в Таблице 2. Метрологические характеристики ИИК АИИС КУЭ приведены в Таблице 3.

Таблица 2

X	Диспетчерское	Состав ИИК				
№ ИИК	наименование точки учёта	Трансформатор тока	Трансформатор напряжения	Счетчик электри- ческой энергии	ИВК	элект- роэнер гии
1	ПС 220/35/10 Кв "Козьмино", ОРУ 220 кВ, Сторона Т-2 ОПУ пан. 19	ТG 245 класс точности 0,2S Ктт = 250/5 Зав. № 00184; 00183; 00185 Госреестр № 30489-09	НАМИ-220 УХЛ1 класс точности 0,2 Ктн = 220000/√3/100/√3 Зав. № 1222; 1213; 1207 Госреестр № 20344-05	СЭТ-4ТМ.03 класс точности 0,2S/0,5 Зав. № 0108080802 Госреестр № 27524-04	Ξ \sim	Активная Реактивная
2	ПС 220/35/10 кВ "Козьмино", ОРУ 220 кВ, Сторона СВ ОПУ пан. 19	ТG 245 класс точности 0,2S Ктт = 250/5 Зав. № 00192; 00191; 00190 Госреестр № 30489-09	НАМИ-220 УХЛ1 класс точности 0,2 Ктн = 220000/√3/100/√3 Зав. № 1222; 1213; 1207 Госреестр № 20344-05	СЭТ-4ТМ.03 класс точности 0,2S/0,5 Зав. № 0108080833 Госреестр № 27524-04		Активная Реактивная
3	ПС 220/35/10 кВ "Козьмино", ОРУ 220 кВ, Сторона Т-1 ОПУ пан. 19	ТG 245 класс точности 0,2S Ктт = 250/5 Зав. № 00186; 00182; 00181 Госреестр № 30489-09	НАМИ-220 УХЛ1 класс точности 0,2 Ктн = 220000/√3/100/√3 Зав. № 1210; 1221; 1205 Госреестр № 20344-05	СЭТ-4ТМ.03 класс точности 0,2S/0,5 Зав. № 0111080109 Госреестр № 27524-04	ИВК 000 НР DL 120 G6 X	Активная Реактивная

Таблица 3

т иолици з					
		Пределы допускаемой относительной погрешности ИИК при из-			
Номер ИИК	2020	мерении активной электрической энергии в рабочих условиях			
помер инк	cosφ	эксплуатации δ, %			
		$I_{5\%} \le I_{M3M} < I_{20\%}$	I $_{20~\%} \le$ I $_{\rm H3M} <$ I $_{100~\%}$	$I_{100} \% \le I_{M3M} \le I_{120} \%$	
	1,0	±1,2	± 0.8	±0,8	
1 – 3	0,9	±1,3	$\pm 0,9$	±0,8	
TT-0,2S; TH-0,2;	0,8	±1,4	±1,0	±0,9	
Сч-0,2S	0,7	±1,6	±1,1	±0,9	
	0,5	±2,2	±1,4	±1,2	
		Пределы допускаемой относительной погрешности ИИК при из-			
Номер ИИК	sinφ	мерении реактивной электрической энергии в рабочих условиях			
помер инк		эксплуатации δ, %			
		$I_{5\%} \le I_{M3M} < I_{20\%}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{M3M} \le I_{120 \%}$	
1 – 3	0,9	±5,6	±2,1	±1,5	
TT-0,2S; TH-0,2;	0,8	±4,6	±1,7	±1,2	
Сч-0,5	0,7	±4,1	±1,6	±1,1	
C-1-0, <i>J</i>	0,5	±3,8	±1,4	±1,1	

Ход часов компонентов АИИС КУЭ не превышает ±5 с/сут.

Примечания:

- 1. Погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi = 1,0$ нормируется от $I_{1\%}$, а погрешность измерений $\delta_{1(2)\%P}$ и $\delta_{1(2)\%Q}$ для $\cos \phi < 1,0$ нормируется от $I_{2\%}$.
- 2. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 3. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 4. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98 · Uном до 1,02 · Uном;
 - сила тока от Іном до 1,2·Іном, $\cos \varphi = 0,9$ инд;
 - температура окружающей среды: от плюс 15 до плюс 25 °C.
- 5. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети 0,9 · Uном до 1,1 · Uном,
 - сила тока от 0,01·Іном до 1,2·Іном;
 - температура окружающей среды:
 - для счетчиков электроэнергии от плюс 5 до плюс 35 °C;
 - для трансформаторов тока по ГОСТ 7746-2001;
- 6. Трансформаторы тока по ГОСТ 7746-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ 30206-94, в режиме измерения реактивной электроэнергии по ГОСТ 26035-83;
- 7. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 6 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 3. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

• счетчик электроэнергии СЭТ-4ТМ.03 – среднее время наработки на отказ не менее 90000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчиков электроэнергии Тв ≤ 2 часа;
- для сервера Тв ≤ 1 час;
- для компьютера APM Тв ≤ 1 час;
- для модема Тв ≤ 1 час.

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют устройства для пломбирования;
- панели подключения к электрическим интерфейсам счетчиков защищены механическими пломбами:
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, УССВ, сервере, АРМ;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и эксплуатационного персонала;
- защита результатов измерений при передаче.

Наличие фиксации в журнале событий счетчика следующих событий

- фактов параметрирования счетчика;
- фактов пропадания напряжения;
- фактов коррекции времени.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- сервере (функция автоматизирована).

Глубина хранения информации:

- счетчики электроэнергии Меркурий 230 тридцатиминутный профиль нагрузки в двух направлениях при отключении питания 85 суток;
- ИВК хранение результатов измерений и информации о состоянии средства измерений не менее 3,5 лет.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в Таблице 4.

т.	ح.			1
1 a	()J	ΤИ	на	4

Наименование	Тип	Количество,
Панменование	1 1111	шт.
1	2	3
Трансформатор тока	TG 245	9
Трансформатор напряжения	НАМИ-220 УХЛ1	6
Счётчик электрической энергии	CЭT-4TM.03	3
Модем GSM/GPRS/EDGE	Digi Connect WAN	1
Преобразователь интерфейса RS485/RS232	MOXA A52	1
Модем GSM/GPRS	ETM 9300-1	1

Продолжение таблицы 4

1	2	3
Сервер	HP DL120 G6 X3430 Pluggable SATA EU Svr	1
Источник бесперебойного питания	HP R1500 G2 Intl UPS	1
Преобразователь интерфейсов	ADAM-4520 RS-32/RS-485	1
Модем	IRZ ES75i Terminal GSM/GPRS	2
Порт-сервер	PortServer TS 4	1
Межсетевой экран	Cisco ASA	1
Маршрутизатор	Cisco 1841Modular Router w/2xFE, 2 WAN slots, 32 FL/128 DR	1
Коммутатор	3Com Baseline 2016	1
УССВ	Метроника МС-225	1
Методика поверки	MΠ 1686/550-2013	1
Формуляр	РЭР.2013.АИИС.510.1.ЭД.ФО	1

Поверка

осуществляется по документу МП 1686/550-2013 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОРЕСУРС» для электроснабжения ООО «СМНП Козьмино». Методика поверки», утвержденному ГЦИ СИ ФБУ «Ростест-Москва» в октябре 2013 года.

Основные средства поверки:

- трансформаторов тока по ГОСТ 8.217-2003;
- трансформаторов напряжения по ГОСТ 8.216-2011;
- счетчиков электроэнергии СЭТ-4ТМ.03 по методике поверки ИЛГШ.411152.124 РЭ1 согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» в 2004 г.;

Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);

Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;

Термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50 °C, цена деления 1 °C.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе: «Методика (метод) измерений электрической энергии и мощности с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОРЕСУРС» для электроснабжения ООО «СМНП Козьмино». Свидетельство об аттестации методики (метода) измерений № 1307/550–01.00229 – 2013 от 03 октября 2013 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «РУСЭНЕРГОРЕСУРС» для электроснабжения ООО «СМНП Козьмино».

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

- при осуществлении торговли и товарообменных операций.

Изготовитель

ООО «РУСЭНЕРГОРЕСУРС»

г. Москва, улица Ольховская, дом 27, строение 3, тел. (495) 775-73-71 факс (495) 775-73-72.

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве» (ФБУ «Ростест-Москва»).

117418 г. Москва, Нахимовский проспект, 31

Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11

Факс (499) 124-99-96

Аттестат аккредитации ГЦИ СИ ФБУ «Ростест-Москва» по проведению испытаний средств измерений в целях утверждения типа № 30010-10 от 15.03.2010 г.

Заместитель			
Руководителя Федерального агент-			
ства по техническому регулирова-			
нию и метрологии			 Ф.В. Булыгин
	М.г		 2013 г.
	171.1	١. "	 2013 1.