

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

DE.C.35.010.A № 49045

Срок действия до 07 декабря 2017 г.

HAUMEHOBAHUE ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Приемники измерительные ESR3, ESR7

ИЗГОТОВИТЕЛЬ

Фирма "Rohde & Schwarz GmbH & Co. KG", Германия

РЕГИСТРАЦИОННЫЙ № 52009-12

ДОКУМЕНТ НА ПОВЕРКУ МП РТ 1815-2012

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **07 декабря 2012 г.** № **1100**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства

Ф.В.Булыгин

"...... 2012 г.

No 007700

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Приемники измерительные ESR3, ESR7

Назначение средства измерений

Приемники измерительные ESR3, ESR7 предназначены для измерений электромагнитных помех по ГОСТ Р 51318.16.1.1-2007, а также параметров спектра радиотехнических сигналов, в том числе в реальном масштабе времени.

Описание средства измерений

Конструктивно приемники измерительные ESR3, ESR7 выполнены в виде переносного моноблока, на передней панели которого расположены органы управления и жидкокристаллический цветной дисплей.

Принцип действия приемников измерительных ESR3, ESR7 основан на методе последовательного и параллельного анализа сигнала. Приемники измерительные ESR3, ESR7 представляют собой автоматически или вручную перестраиваемые супергетеродинные приемники, которые отображают амплитуды спектральных компонент в зависимости от частоты. Для предотвращения перегруза входного каскада при измерениях широкополосных помех приемники измерительные ESR3, ESR7 оснащены переключаемыми преселекторами. Приемники измерительные ESR3, ESR7 имеют режимы частотного последовательного сканирования с последующей обработкой сигнала промежуточной частоты ПЧ фильтрами и детекторами на цифровых микросхемах и временного параллельного сканирования на основе БПФ с обработкой сигнала ПЧ программными фильтрами и детекторами. Приемники измерительные ESR3, ESR7 обеспечивает сканирование для измерения радиопомех в диапазоне частот по внутренней автоматизированной процедуре. Также приемники измерительные ESR3, ESR7 позволяют проводить анализ радиотехнических сигналов в реальном масштабе времени.

Управление операциями меню, а также задание рабочих параметров производится с помощью клавиатуры передней панели. Результаты измерений выводятся на экран дисплея в графической и цифровой формах. Для работы в составе автоматизированных систем приемники измерительные ESR3, ESR7 обеспечивают подключение по интерфейсам: GPIB, USB 2.0, LAN (100Base-T).

Приемники измерительные ESR3, ESR7 имеют следующие опции:

В4 – опорный генератор повышенной точности;

В9 – следящий генератор;

В22 – предусилитель;

В29 – расширение диапазона частот от 10 Гц;

В30 – питание от постоянного тока;

B50 – плата для сканирования во временной области и анализа в реальном масштабе времени;

К53 – сканирование во временной области;

К55 – анализ в реальном масштабе времени;

K56 – анализ ПЧ.

Программное обеспечение

Программное обеспечение «ESR Firmware» предназначено только для работы с приемниками измерительными ESR3, ESR7 и не может быть использовано отдельно от измерительно-вычислительной платформы этих приборов.

Программное обеспечение не влияет на метрологические характеристики приемников измерительных ESR3, ESR7.

Уровень защиты программного обеспечения А по МИ 3286-2010.

Идентификационные данные ПО приведены в таблице.

Наименование	Идентификационное	Номер вер-	Цифровой	Алгоритм вычисле-
программного	наименование про-	сии про-	идентификатор	ния цифрового иден-
обеспечения	граммного обеспече-	граммного	программного	тификатора програм-
	Р ИН	обеспечения	обеспечения	много обеспечения
ESR Firmware	FW ESR	Версия 1.76		

Внешний вид приемников измерительных ESR3, ESR7 приведен на рисунке 1. Схема пломбировки от несанкционированного доступа приведена на рисунке 2.

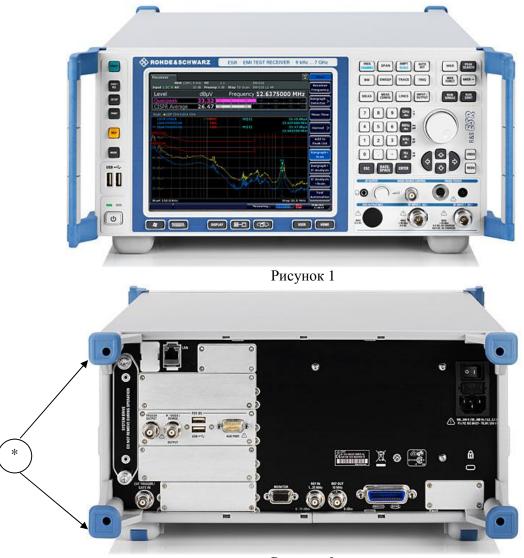


Рисунок 2

Метрологические и технические характеристики

Метрологические и технические характеристики приемников измерительных ESR3, ESR7 приведены в таблице 1.

Таблица 1

Наименование характеристик	Значения характеристик
Диапазон частот:	
ESR3	от 9 кГц до 3,6 ГГц
ESR7	от 9 кГц до 7 ГГц
	от 10 Гц с опцией В29

^{* -} Места для пломбировки от несанкционированного доступа.

**		1		
Наименование характеристик	Значения характеристик			
Номинальное значение частоты опорного квар-	10 МГц			
цевого генератора	±1×10 ⁻⁶			
Пределы допускаемой основной относительной				
погрешности частоты опорного генератора, $\delta_{O\Pi}$	с опцией термостатированного генератора опорной частоты $B4$			
Пределы допускаемой абсолютной погрешности				
измерения частоты $F_{\rm ИЗМ}$ в режиме частотомера	$\pm(\delta_{\rm OII} \times F_{\rm H3M} + R)$			
(при отношении сигнал/шум не менее 25 дБ)				
Разрешение частотомера, R	0,001 Γι			
Диапазон полос обзора	0 Гц; от 10 Гц до полного	диапазона частот		
Пределы допускаемой относительной погреш-	±0,1 %			
ности установки полосы обзора	±0,1 70			
Режимы сканирования приемника	Частотно	oe,		
	во временной области (
Диапазон частот, измеряемый в параллельном	0,66 МГц при RB			
режиме, при сканировании во временной об-	30 МГц при RBV			
ласти	24,6 МГц при RBV			
	25,6 МГц при RB	$W = 1 M\Gamma$ ц		
Уровень фазовых шумов относительно уровня	100 Гц	минус 84 дБ/Гц		
несущей на несущей частоте 500 МГц, при от-	1 кГц	минус 101 дБ/Гц		
стройке от несущей, не более		минус 106 дБ/Гц		
	100 кГц	минус 115 дБ/Гц		
		минус 134 дБ/Гц		
Диапазон перестройки фильтров полосы про-	от 10 Гц до 10 МГц (с шагом 1-2-3-5),			
пускания ПЧ, RBW	20 МГц, 28 МГц и 40 ГГц в н			
	200 Гц, 9 кГц, 120 кГц, 1 МГ	ц - фильтры электро-		
	магнитной совместимости (Э	,		
	10 Гц, 100 Гц, 1 кГц, 10 кГц,			
	тельные фильтры ЭМС с опцией В29			
	от 10 Гц до 300 кГц (с шагом БПФ	1-2-3-5) - фильтры		
Пределы допускаемой относительной погреш-	D111			
ности установки ширины полос пропускания	±3 %			
ПЧ по уровню минус 3 дБ				
Пределы допускаемой относительной погреш-				
ности установки ширины полос пропускания	±3 %			
ПЧ по уровню минус 6 дБ (фильтры ЭМС):				
Коэффициент прямоугольности фильтров поло-				
сы пропускания (по уровням минус 60 дБ и ми-	5:1			
нус 3 дБ), не более:				
Коэффициент прямоугольности фильтров ЭМС	4:1			
(по уровням минус 60 дБ и минус 6 дБ), не более				
Диапазон перестройки полос видеофильтра	от 1 Гц до 10 МГц (с г	шагом 1-2-3-5),		
	20 МГц, 28 МГц, 40 МГц			
Диапазон перестройки фильтров преселекции, в		фиксированный НЧ		
диапазоне частот по уровню минус 6 дБ		фиксированные по-		
		лосовые		
	от 150 кГц до 30 МГц	35 МГц		
	от 30 МГц до 80 МГц	94 МГц		
	от 80 МГц до 130 МГц	94 МГц		
	от 130 МГц до 180 МГц	91 МГц		
	от 180 МГц до 230 МГц	105 МГц		
	от 230 МГц до 300 МГц	110 МГц		

Наименование характеристик	Наименование характеристик Значения характеристик			
Диапазон перестройки фильтров преселекции, в	от 300 МГц до 425 МГц	195 МГц		
диапазоне частот по уровню минус 6 дБ	от 425 МГц до 570 МГц	2003.5		
	от 570 МГц до 715 МГц	01035		
	от 715 МГц до 860 МГц			
	от 860 МГц до 1005 МГ			
	от 1005 МГц до 1750 МГ			
	от 1750 МГц до 2850 МГ			
	от 2850 МГц до 4850 МГ	· •		
	от 4850 МГц до 7000 МГ	· · · · · · · · · · · · · · · · · · ·		
Предусилитель (опция В22)	усиление 20 дБ о	I		
	от среднего уровня шумов			
Диапазон измеряемых уровней	от среднего уровня шумов 1 м.			
Средний уровень собственных шумов в режиме	с выключенным	с включенным		
анализатора спектра, приведенный к 1 Гц, от-	предусилителем	предусилителем		
носительно 1 мВт, не более:				
на частоте 10 Гц	минус 90 дБ			
на частоте 20 Гц	минус 100 дБ			
на частоте 100 Гц	минус 110 дБ			
на частоте 1 кГц	минус 120 дБ	минус 140 дБ		
от 9 кГц до 100 кГц	минус 130 дБ	минус 150 дБ		
от 100 кГц до 1 МГц	минус 145 дБ	минус 155 дБ		
от 1 МГц до 1 ГГц	минус 152 дБ	минус 165 дБ		
от 1 Гц до 3,6 ГГц	минус 150 дБ	минус 162 дБ		
от 3,6 ГГц до 6 ГГц	минус 148 дБ	минус 160 дБ		
от 6 ГГц до 7 ГГц	минус 146 дБ	минус 158 дБ		
Средний уровень собственных шумов в режиме	с выключенным	с включенным		
измерительного приемника (детектор средних	предусилителем	предусилителем		
значений), относительно 1 мкВ, не более:				
на частоте 10 Гц, RBW = 10 Гц	27 дБ			
на частоте 20 Гц, RBW = 10 Гц	17 дБ			
на частоте 100 Гц, RBW = 10 Гц	7 дБ			
на частоте 1 кГц, RBW = 100 Гц	7 дБ	минус 13 дБ		
от 9 к Γ ц до 100 к Γ ц, RBW = 200 Γ ц	0 дБ	минус 20 дБ		
от 100 кГц до 150 кГц, RBW = 200 Гц	минус 15 дБ	минус 25 дБ		
от 150 кГц до 1 МГц, RBW = 9 кГц	2 дБ	минус 8 дБ		
от 1 МГц до 30 МГц, RBW = 9 кГц	минус 5 дБ	минус 18 дБ		
от 30 МГц до 1 ГГц, RBW=120 кГц	6 дБ	минус 7 дБ		
от 1 ГГц до 3,6 ГГц, RBW=1 МГц	17 дБ	5 дБ		
от 3,6 ГГц до 6 ГГц, RBW=1 МГц	19 дБ	7 дБ		
от 6 ГГц до 7 ГГц, RBW=1 МГц	21 дБ	9 дБ		
Пределы допускаемой абсолютной погрешности	с выключенным пресе-	с включенным		
измерения уровня сигнала минус 10 дБ относи-	лектором	преселектором		
тельно 1 мВт на частоте 64 МГц (опорный уро-	-	-		
вень минус 10 дБ относительно 1 мВт, ослабле-	±0,2 дБ	±0,3 дБ		
ние входного аттенюатора 10 дБ, $RBW = 10 \ \kappa \Gamma \mu$)				
Неравномерность амплитудно-частотной харак-	с выключенным	с включенным		
теристики относительно уровня	преселектором	преселектором		
на частоте 64 МГц, не более		•		
в диапазоне частот от 10 Гц до 9 кГц	±1,0 дБ	±1,0 дБ		
в диапазоне частот от 9 кГц до 10 МГц	±0,5 дБ	±0,6 дБ		
в диапазоне частот от 10 МГц до 3,6 ГГц	±0,3 дБ	±0,6 дБ		
в диапазоне частот от 3,6 ГГц до 7 ГГц	±0,5 дБ	±0,8 дБ		
Диапазон и шаг перестройки аттенюатора СВЧ	от 0 до 70 дЕ			

Наименование характеристик	Значения характеристик		
Пределы допускаемой абсолютной погрешно-	* *		
сти измерения уровня из-за переключения ос-	±0,2 дБ		
лабления входного аттенюатора на частоте 64			
МГц относительно ослабления 10 дБ			
Пределы допускаемой абсолютной погрешно-	фильтры развертки	±0,1 дБ	
сти измерения уровня из-за переключения по-	фильтры БПФ	±0,2 дБ	
лосы пропускания относительно RBW = 10 кГц,			
при RBW			
Пределы допускаемой абсолютной погрешно-	от 0 до минус 50 дБ	±0,1 дБ	
сти измерения уровня из-за нелинейности шка-	от минус 50 до минус 60 дБ	±0,15 дБ	
лы (при отношении сигнал/шум не менее 16 дБ)	от минус 60 дБ до минус 70 дБ	±0,2 дБ	
Пределы допускаемой абсолютной погрешно-	с выключенным преселектором	±0,4 дБ	
сти измерения уровня в диапазоне от минус	от 9 кГц до 10 МГц	±0,31 дБ	
70 дБ до 0 дБ относительно опорного уровня,	от 10 МГц до 3,6 ГГц		
при отношении сигнал/шум не менее 20 дБ и	от 3,6 ГГц до 7 ГГц	±0,4 дБ	
доверительной вероятности 95%	с включенным преселектором		
	от 9 кГц до 3,6 ГГц	±0,47 дБ	
	от 3,6 ГГц до 7 ГГц	±0,57 дБ	
Типы детекторов	Максимальный пиковый, минимал	іьный пико-	
	вый, среднеквадратический RMS, квазипико-		
	вый, средний AVG, CISPR-AVG, (CISPR-RMS	
Пределы допускаемой абсолютной погрешно-			
сти выполнения амплитудного соотношения	±1,5 дБ		
квазипикового детектора (в соответствии с	±1,5 дВ		
ΓΟCT P 51318.16.1.1-2007)			

Пределы допускаемой абсолютной погрешности выполнения импульсной характеристики квазипикового летектора (в соответствии с ГОСТ Р 51318.16.1.1-2007)

кового детектора (в соответствии с ГОСТР 51318.16.1.1-2007)						
Частота повторения,	Значения импульсной характеристики и её допустимые отклонения,					
Гц	дБ, в полосе частот:					
	от 9 до 150 кГц					
1000	_	минус $4,5 \pm 1,0$	минус 8,0 ± 1,0			
100	минус $4,0 \pm 1,0$	опорное значение	опорное значение			
60	минус 3.0 ± 1.0	_				
25	опорное значение	опорное значение –				
20	_	$+6.5 \pm 1.0$	$+9,0 \pm 1,0$			
10	$+4,0 \pm 1,5$	$+10,0 \pm 1,5$	$+14,0 \pm 1,5$			
5	$+7,5 \pm 2,0$	_	_			
2	$+13,0 \pm 2,0$	$+13,0 \pm 2,0$ $+20,5 \pm 2,0$ $+26,0 \pm 2,0$				
1	$+17,0 \pm 2,0$	$+22,5 \pm 2,0$	$+28,5 \pm 2,0$			

Относительный уровень интермодуляцион-	с выключенным	с включенным	с включенным		
ных искажений 3 порядка Lимз, выражен-	преселектором и	преселектором и	преселектором и		
ный в виде точки пересечения 3 порядка	выключенным	выключенным	включенным пре-		
$(TOI)^1$, при сдвиге по частоте не менее	предусилителем	предусилителем	дусилителем		
5×RBW или 10 кГц (что больше), относи-					
тельно 1 мВт, не менее					
от 10 МГц до 100 МГц	12 дБ	5 дБ	минус 16 дБ		
от 100 МГц до 3,6 ГГц	13 дБ	8 дБ	минус 14 дБ		
от 3,6 ГГц до 7 ГГц	15 дБ	5 дБ	минус 10 дБ		
$^{\rm I}{ m TOI} = (2*{ m L}_{ m cmec.} - { m L}_{ m UM3})/2$, где: ${ m L}_{ m cmec.} - { m y}{ m p}{ m o}{ m B}{ m e}{ m h}{ m b}{ m x}{ m o}{ m c}{ m u}{ m r}{ m h}{ m a}{ m a}{ m c}{ m m}{ m e}{ m c}{ m u}{ m r}{ m h}{ m a}{ m s}{ m e}{ m c}{ m u}{ m r}{ m e}{ m s}{ m e}{ m e}{ m v}{ m e}{ m e}$					

	Т		1		T	
Относительный уровень гармонических				люченным	с включенным	
искажений 2-го порядка L_{k2} , выраженный в			прес	електором и	преселектором и	
виде точки пересечения 2-го порядка		ненным	вык	люченным	включенным пре-	
$(SHI)^2$, в диапазоне частот, относительно 1	предуси	лителем	пред	усилителем	дусилителем	
мВт, не менее						
от 100 МГц до 3,5 ГГц	45			50 дБ	35 дБ	
2 SHI = $L_{cmec.}$ - L_{k2} , где: $L_{cmec.}$ - уровень входно		а смесите	ЛЯ			
Уровень подавления каналов приема зеркал						
частот, промежуточных частот и прочих пар				минус 70 д	ξБ	
каналов, относительно уровня несущей, не б						
Уровень остаточных сигналов комбинацион	нных час-		ход заглушен, аттенюатор 0 минус 103 дБ			
тот, относительно 1 мВт, не более		дБ, часто	та не 1	менее 1 МГц	минус 103 дв	
Входное сопротивление анализатора				50 Ом		
КСВН входа (аттенюатор СВЧ 10 дБ) в диап	іазоне	Į	цо 3,6	ГГц	1,5	
частот, не более		от 3	ГГц д	о 7 ГГц	2,0	
Разъем СВЧ входа:				N-тип «розет	тка»	
Характеристики сл	едящего г	енератора	а (опц	ия В9)		
Диапазон частот сигнала						
ESR3				от 100 к	:Гц до 3,6 ГГц	
ESR7				от 100	кГц до 7 ГГц	
Диапазон уровней сигнала, относительно 1 м	мВт			от минус	с 60 дБ до 0 дБ	
Пределы допускаемой абсолютной погрешн	ости выхс	дного урс	ВНЯ		. 1.0Γ	
сигнала минус 10 дБ относительно 1 мВт на	частоте 6	4 МГц		=	±1,0 дБ	
Неравномерность амплитудно-частотной ха	рактерист	ики относ	:и-			
тельно уровня минус 10 дБ относительно 1 м						
не более						
Разъем СВЧ выхода:				N-ти	п «розетка»	
Режим анализа в реальном масштабе времени						
при выключенном преселекторе (опция К55+В50)						
Диапазон значений полосы обзора				г 10 кГц до 4	10 МГц	
Диапазон значений полосы пропускания		от 2 Гі			овню минус 3 дБ	
				* 1	овню минус 6 дБ	
Значения неравномерности амплитудно-частотной			70-	± 0,8 дЕ	Ţ	
характеристики, не более				= 0,0 A		
Значение динамического диапазона в поло	се анапи-			70 дБ		
за 40 МГц, не менее	oc anam			70 дв		
Минимальная длительность сигнала для и	on concurre		24 мкс			
уровня в полосе анализа 40 МГц с детекто				24 MKC		
Реак	ром мах					

Условия эксплуатации и	і массогас	раритные	харак	теристики		
Рабочие условия эксплуатации:				- 00	10.00	
- температура окружающего воздуха			от +5 °C до +40 °C			
- относительная влажность воздуха			от 40 % до 90 %			
Условия хранения и транспортирования:						
- температура окружающего воздуха			от минус 40 °C до +70 °C			
- относительная влажность воздуха			не более 90 %			
Масса без опций, не более			12,8 кг			
Габаритные размеры (ширина×высота×глубина)			412 mm × 197 mm × 517 mm			
Питание от сети переменного тока	,	от 10	от 100 В до 240 В; от 50 Гц до 400 Гц			
Потребляемая мощность		0.1	не более 250 Вт			
Напряжение питания постоянного тока		ОППИ	опция В30 от 10 до 28 В			
•		ОПЦИ	טכע זי	30 мин		
Время прогрева				эо мин		

Знак утверждения типа наносится типографским способом на титульный лист эксплуатационной документации и на лицевую панель приемников измерительных ESR3, ESR7 методом наклейки.

Комплектность средства измерений

Комплект поставки включает:

- приемник измерительный ESR3, ESR7 1 шт.;
- опции к приемнику по отдельному заказу;
- комплект ЗИП 1 шт.;
- комплект эксплуатационной документации 1 шт.;
- методика поверки 1 шт.

Поверка

осуществляется по документу «Приемники измерительные ESR3, ESR7. Методика поверки» МП РТ 1815-2012, утвержденному ФБУ «Ростест-Москва» в 2012 г.

Средства поверки:

Наименование	Требуемые технические хар	Рекомендуемое сред-	
средства поверки	ва поверки	ство поверки	
	Пределы измерений	Пределы допускае- мой погрешности	
Стандарт часто-	Частота выходных сигна-	±5×10 ⁻¹⁰ за 1 год	Стандарт частоты
ты	лов 5 МГц, 10 МГц		рубидиевый GPS-12RG
Частотомер уни- версальный	Диапазон частот от 0,001 Гц до 100 МГц	±5×10 ⁻¹⁰ с внешней опорной частотой за 1 год	Частотомер универ- сальный CNT-90XL
Генератор сигналов	от 100 кГц до 7 ГГц от минус 100 дБ до 10 дБ относительно 1 мВт ИМ: длительность импульсов от 20 нс до 1 с	уровень фазовых шумов на частоте 1 ГГц при отстройке 20 кГц не более минус 115 дБ/Гц относительно уровня несущей	Генератор сигналов СВЧ SMF100A
Генератор сигна-	от 10 Гц до 100 кГц	±1×10 ⁻⁶	Генератор сигналов
лов произволь- ной формы	от 5 мВ до 5 В ИМ: длительность импульсов от 20 нс до 1 с	±1 %	произвольной формы HMF2525
Измеритель мощности	от 10 Гц до 7 ГГц от 2×10 ⁻³ до 1×10 ² мВт	±0,1 дБ	Преобразователь из- мерительный NRP-Z51
			аттестованный по 2-ому разряду
Аттенюатор сту-	от 0 Гц до 100 МГц		Аттенюатор
пенчатый	от 0 до 70 дБ	±0,03 дБ	ступенчатый RSC
Осциллограф цифровой	Полоса 600 МГц от 1 мВ до 5 В	±3 %	Осциллограф цифровой RTO1002
Анализатор це- пей	от 9 кГц до 7 ГГц КСВН: от 1,05 до 10	±5 %	Анализатор цепей векторный ZNB8

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений содержатся в документах:

- «Приемники измерительные ESR3, ESR7. Руководство по эксплуатации»;
- ГОСТ Р 51318.14.1- 2006. Совместимость технических средств электромагнитная. Бытовые приборы, электрические инструменты и аналогичные устройства. Радиопомехи индустриальные. Нормы и методы измерений

Нормативные и технические документы, устанавливающие требования к приемникам измерительным ESR3, ESR7:

- Техническая документация фирмы-изготовителя "Rohde & Schwarz GmbH & Co. KG", Германия;
- ГОСТ Р51318.16.1.1 2007. Требования к аппаратуре для измерения параметров индустриальных радиопомех и помехоустойчивости и методы измерений.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов установленным законодательством Российской Федерации обязательным требованиям.

Изготовитель

Фирма "Rohde & Schwarz GmbH & Co. KG", Германия.

Muehldorfstrasse 15, 81671 Munich, Germany, Тел.: +49 89 41 29 0, Факс: +49 89 41 29 12 164

customersupport@rohde-schwarz.com

Заявитель

Московское представительство фирмы Rohde & Schwarz GmbH & Co. KG Московское представительство

Российская Федерация, 115093 г. Москва, Павловская, д.7, стр.1

Телефон:+7 (495) 981-3560

Факс: +7 (495) 981-3565

Испытательный центр

ГЦИ СИ ФБУ «Ростест-Москва» (аттестат аккредитации № 30010-10 от 15.03.2010 г.)

117418 г. Москва, Нахимовский проспект, 31 Тел: (495) 544-00-00, Факс: (499) 124-99-96

info@rostest.ru

n					
≺:	a NA	൙൨	ти	те	пъ
J	aivi	\sim	111	10.	ш

Руководителя Федерального агентства по техническому регулированию и метрологии

Ф. В. Булыгин

«____»___ М.п. 2012 г.