

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.033.A № 44302

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная

коммерческого учета электрической энергии (мощности)
ОАО "Южно-Уральский криолитовый завод" - АИИС КУЭ ОАО "Криолит"

ЗАВОДСКОЙ НОМЕР 1

ИЗГОТОВИТЕЛЬ

ООО "Роспроект-инжиниринг", г.Ярославль

РЕГИСТРАЦИОННЫЙ № 48124-11

ДОКУМЕНТ НА ПОВЕРКУ **МП 48124-11**

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **31 октября 2011 г.** № **6290**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя	
Федерального агентства	

Е.Р.Петросян

"...... 2011 г.

Серия СИ

Nº 002341

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» – АИИС КУЭ ОАО «Криолит»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» — АИИС КУЭ ОАО «Криолит» (далее АИИС КУЭ ОАО «Криолит») предназначена для измерений активной и реактивной электрической энергии и мощности, времени.

Описание средства измерений

АИИС КУЭ ОАО «Криолит» представляет собой трехуровневую систему с централизованным управлением и распределенной функцией выполнения измерений активной и реактивной электрической энергии и мощности.

АИИС КУЭ ОАО «Криолит» решает следующие задачи:

- автоматические измерения 30-минутных приращений активной и реактивной электрической энергии и средних на 30-минутных интервалах значений активной и реактивной мощности;
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к календарному времени измеренных данных о приращениях электрической энергии и значениях электрической энергии с нарастающим итогом с дискретностью учета 30 мин и данных о состоянии средств измерений;
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
- передача результатов измерений на сервер АИИС КУЭ ОАО «Криолит» и автоматизированные рабочие места (APM);
- подготовка результатов измерений в XML формате для их передачи по электронной почте внешним организациям;
- предоставление по запросу доступа к результатам измерений, данным о состоянии средств измерений со стороны сервера электросетевых и энергосбытовых организаций;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка пломб, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ ОАО «Криолит»;
 - конфигурирование и настройка параметров АИИС КУЭ ОАО «Криолит»;
 - ведение времени в АИИС КУЭ ОАО «Криолит» (коррекция времени).

Структурная схема АИИС КУЭ ОАО «Криолит» приведена на рис. 1.

АИИС КУЭ ОАО «Криолит» включает в себя следующие уровни.

Первый уровень – измерительно-информационные комплексы (ИИК) включают в себя измерительные трансформаторы напряжения и тока, счётчики активной и реактивной электрической энергии и мощности по каждому присоединению (измерительному каналу).

Второй уровень – информационно-вычислительный комплекс электроустановки (ИВКЭ) включает в себя устройство сбора и передачи данных (УСПД) ЭКОМ-3000Т (№17049-09 в Государственном реестре средств измерений) с устройством синхронизации системного времени; технические средства организации каналов связи как компонентов ИВ-КЭ между собой, так и УСПД с ИИК.

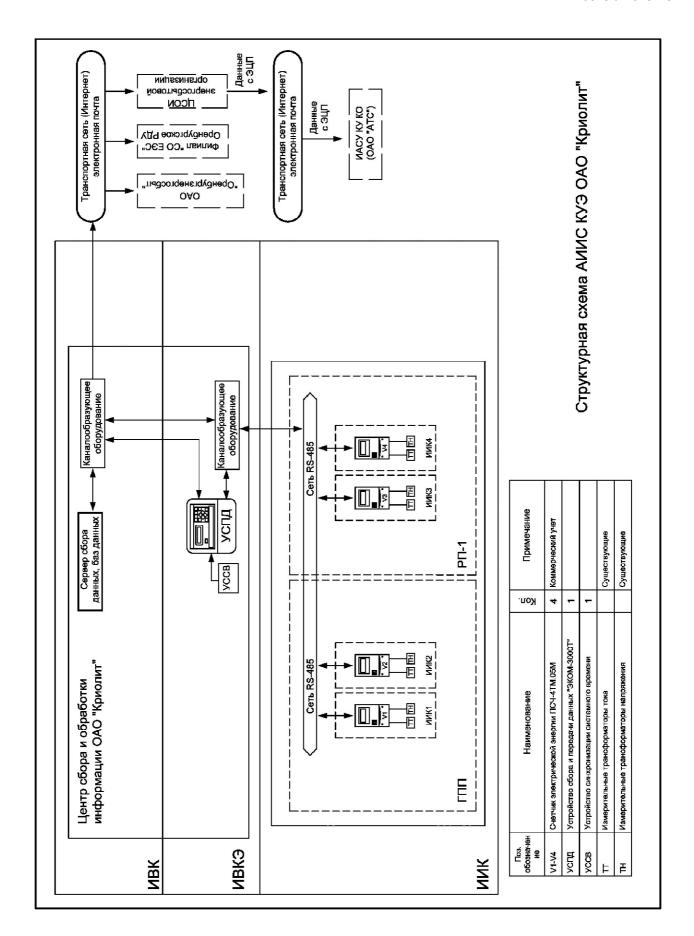


Рис. 1 Структурная схема АИИС КУЭ ОАО «Криолит»

Третий уровень – информационно-вычислительный комплекс (ИВК) включает в себя сервер и возможно подключение автоматизированного рабочего места (АРМ); технические

средства организации каналов связи. В ИВК АИИС КУЭ ОАО «Криолит» имеются каналы связи между сервером и УСПД и каналы связи между сервером и внешними субъектами.

Канал связи между сервером и внешними субъектами – канал через Интернет.

Система обеспечения единого времени (СОЕВ) формируется на всех уровнях АИИС КУЭ ОАО «Криолит» и выполняет законченную функцию измерений времени и интервалов времени. В качестве задатчика точного времени используется GPS-приемник, синхронизирующий время таймера УСПД от сигналов GPS. Синхронизация времени счетчиков осуществляется УСПД не чаще одного раза в сутки по тем же каналам, что и обмен данными при расхождении времени счетчика и УСПД более 1-й секунды. Проверка расхождения осуществляется в каждом сеансе связи УСПД со счетчиком, не реже 1 раза за 30 мин. Синхронизация времени сервера происходит также от УСПД.

Аналоговые сигналы от первичных преобразователей электрической энергии (трансформаторов тока и напряжения) поступают на счетчики электрической энергии. Счетчики электрической энергии являются измерительными приборами, построенными на принципе цифровой обработки входных аналоговых сигналов. Управление процессом измерений в счетчиках электрической энергии осуществляется микроконтроллером, который реализует алгоритмы в соответствии со специализированной программой, помещенной в его внутреннюю память.

Результаты преобразований приращений электрической энергии, присутствующей на входе счетчика, по цифровым каналам связи со счетчиков электрической энергии по запросу передаются в форме профиля мощности в УСПД, который производит преобразование этих данных с целью приведения их значений к значениям 30-ти минутных приращений энергии на входе счетчика и формирует архив. Сервер по запросу считывает данные из архива УСПД и производит расчет учетных показателей в точках поставки электрической энергии и формирует архив.

На уровне ИИК и ИВКЭ для защиты информации от несанкционированного доступа применяются следующие меры:

- пломбирование клеммных сборок электрических цепей трансформаторов тока и напряжения;
 - пломбирование клеммных сборок электросчетчиков;
- пломбирование клеммных сборок линии передачи информации по интерфейсу RS-485;
 - пломбирование корпуса УСПД при его поверке;
 - пломбирование клеммных сборок УСПД после выполнения монтажных работ;
- программная защита в УСПД в виде системы паролей, запрещающая изменение настроек конфигурации УСПД;
- ведение внутреннего журнала событий УСПД с регистрацией всех событий с изменением настроечных параметров УСПД.

На уровне ИВК защита информации организована с применением следующих мероприятий:

- ограничение доступа к серверу АИИС КУЭ ОАО «Криолит»;
- установление учетных записей пользователей и паролей доступа к серверу АИИС
 КУЭ ОАО «Криолит»;
- регистрация событий коррекции системного времени и данных по электроэнергии и мощности;
- защита операционной системы сервера АИИС КУЭ ОАО «Криолит» обеспечивается средствами операционной системы.

Защита баз данных осуществляется средствами установленной системы управления базами данных.

В составе АИИС КУЭ ОАО «Криолит» обеспечена сохранность информации при авариях. Под авариями следует понимать потери питания и отказы (потери работоспособности) технических и программно-технических средств.

Программное обеспечение

Программное обеспечение АИИС КУЭ ОАО «Криолит» состоит из следующих частей:

- 1) программное обеспечение «Конфигуратор» для микропроцессорных счетчиков уровень ИИК;
- 2) прикладное программное обеспечение «Энергосфера», производства компании «Прософт-Системы» г. Екатеринбург;
 - 3) системное программное обеспечение APM и сервера АИИС КУЭ ОАО «Криолит».

Системное программное обеспечение включает операционную систему Windows Server 2008 R2 Standart, установленную на сервере АИИС КУЭ ОАО «Криолит»; Windows XP или Windows 7 на компьютерах APM; редакторы и программы обработки текстовой информации, сервисные программы, а также базовое сетевое программное обеспечение, позволяющее функционировать вычислительному комплексу АИИС КУЭ ОАО «Криолит» в составе локальной вычислительной сети ОАО «Криолит». В качестве программного обеспечения систем управления базами данных используется СУБД SQL Server R2 2008.

Идентификационные данные метрологически значимых частей программного обеспечения приведены в таблице 1.

Таблица 1 – Идентификационные данные

Tuomiqu T Tigentinghikuqiromisio gamisio						
	Идентификаци-	Номер версии	Цифровой идентифи-	Алгоритм вычис-		
Наименова-	онное наимено-	(идентификаци-	катор программного	ления цифрового		
ние		онный номер)	обеспечения (кон-	идентификатора		
программы	вание программ-	программного	трольная сумма ис-	программного		
	ного обеспечения	обеспечения	полняемого кода)	обеспечения		
Сервер Опро-	PSO.exe	6.4.57.1683	a121f27f261ff8798132	MD5		
ca			d82dcf761310			
Центр импор-	expimp.exe	6.4.103.2504	06c0826fd43b96af564	MD5		
та/экспорта	_		9f74f0b2acb5a			

Влияние программного обеспечения на суммарную относительную погрешность измерений электрической энергии и мощности отсутствует.

Защита программного обеспечения от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав ИИК и их основные метрологические и технические характеристики АИ-ИС КУЭ ОАО «Криолит» приведены в таблице 2.

Таблица 2

Ка	нал измерений		Средство из	мер	ений		
Но- мер ИК	Наименование присоединения	Вид	Класс точности, Коэффициент рансформации, № Госреестра СИ	Фаза	Обозначение	Вид электро- энергии	Погреш- ность, %
1	2	3	4	5	6	7	8
			КлТ=0,5	A	ТЛМ-10	– активная	$\delta_{1.a.o} = \pm 2.5;$
		TT	Ктт=1500/5	В	I	прямая;	$\delta_{2.a.o} = \pm 1,4;$
	ГПП 110/6 кВ		2473-05	C	ТЛМ-10		$\delta_{1.p.o} = \pm 3.8;$
1	ОАО «Криолит»		КлТ=0,5	A			$\delta_{2.p.o} = \pm 2.1;$
1	6 кВ Ввод-1 6 кВ	тЦ	Ктн=6000/100	В	НАМИТ-10-2		$\delta_{1.a.p} = \pm 3.1;$
	O KD DBOZ-1 O KD	111	16687-07	C			$\delta_{2.a.p} = \pm 2.3;$
		Счет-	КлТ=0,5S/1,0	ПС	CH – 4TM.05M	-	$\delta_{1.p.p} = \pm 5.3;$
		чик	36355-07	110	7 – 41 WLUSIVI	обратная	$\delta_{2.p.p} = \pm 4.3.$

1	2	3	4	5	6	7	8
			КлТ=0,5	A	ТЛМ-10	– активная	$\delta_{1.a.o} = \pm 2.5;$
		TT	Ктт=1500/5	В	-	прямая;	$\delta_{2.a.o} = \pm 1,4;$
	ГПП 110/6 кВ		2473-05	C	ТЛМ-10		$\delta_{1.p.o} = \pm 3.8;$
	ОАО «Криолит»		КлТ=0,5	A			$\delta_{2.p.o} = \pm 2.1;$
2	6 кВ Ввод-2 6 кВ	TH	Ктн=6000/100	В	НАМИТ-10-2		$\delta_{1.a.p} = \pm 3.1;$
	O KD DBOA-2 O KD	111	16687-07	C			$\delta_{2.a.p} = \pm 2.3;$
		Счет-	КлТ=0,5S/1,0	ПС	CH – 4TM.05M	_	$\delta_{1.p.p} = \pm 5.3;$
		чик	36355-07	110	21 = 41 WLOSWI	обратная	$\delta_{2.p.p} = \pm 4.3.$
			КлТ=0,5	A	ТЛК-10		$\delta_{1.a.o} = \pm 2.5;$
		TT	Ктт=150/5	В	-	прямая;	$\delta_{2.a.o} = \pm 1,4;$
	РП 6 кВ ОАО		9143-06	C	ТЛК-10		$\delta_{1.p.o} = \pm 3.8;$
	«Криолит»		КлТ=0,5	Α			$\delta_{2.p.o} = \pm 2.1;$
3	6 кВ яч. 11 ф. 61	TH	Ктн=6000/100	В	НТМИ-6-66		$\delta_{1.a.p} = \pm 3.1;$
	σκο πι. 11 φ. στ	111	2611-70	C		прямая;	$\delta_{2.a.p} = \pm 2.3;$
		Счет-	КлТ=0,5S/1,0	ПС	CH – 4TM.05M	– реактивная	$\delta_{1.p.p} = \pm 5.3;$
		чик	36355-07	110	7 1 - 41 WI.OSWI	обратная	$\delta_{2.p.p} = \pm 4.3.$
			КлТ=0,5	A	ТЛК-10		$\delta_{1.a.o} = \pm 2.5;$
		TT	KTT=150/5	В	_	1 '	$\delta_{2.a.o} = \pm 1,4;$
	РП 6 кВ ОАО		9143-06	C	ТЛК-10		$\delta_{1.p.o} = \pm 3.8;$
	«Криолит»		КлТ=0,5	Α		ратная;	$\delta_{2.p.o} = \pm 2.1;$
4	6 кВ яч. 15 ф. 111	TH	Ктн=6000/100	В	НТМИ-6-66	– реактивная	$\delta_{1.a.p} = \pm 3.1;$
	υ κ <i>D</i> λη, 13 ψ, 111	111	2611-70	C		прямая;	$\delta_{2.a.p} = \pm 2.3;$
		Счет-	КлТ=0,5S/1,0	ПС	CH – 4TM.05M	– реактивная	$\delta_{1.p.p} = \pm 5.3;$
		чик	36355-07	110	Z-1 - 41 WI.USWI	обратная	$\delta_{2.p.p} = \pm 4.3.$

В графе 8 таблицы 2 приведены границы допускаемой относительной погрешности при доверительной вероятности, равной 0,95, при следующих условиях:

 $\delta_{1.a.o}$ — границы допускаемой основной погрешности измерений активной электрической энергии при $I=0,1\cdot I_{\text{ном}}$ для $\cos\phi=0,8;$

 $\delta_{2.a.o}$ — границы допускаемой основной погрешности измерений активной электрической энергии при $I=I_{\text{ном}}$ для $\cos\phi=0.8$;

 $\delta_{1.p.o}$ – границы допускаемой основной погрешности измерений реактивной электрической энергии при $I=0,1\cdot I_{\text{ном}}$ для $\sin\phi=0,6;$

 $\delta_{2.p.o}$ – границы допускаемой основной погрешности измерений реактивной электрической энергии при $I=I_{\text{ном}}$ для $\sin\phi=0.6$;

 $\delta_{1.a.p}$ — границы допускаемой погрешности измерений активной электрической энергии в рабочих условиях применения при $I=0,1\cdot I_{\text{ном}}$ для $\cos\phi=0,8$;

 $\delta_{2.a.p}$ — границы допускаемой погрешности измерений активной электрической энергии в рабочих условиях применения при $I = I_{\text{ном}}$ для $\cos \phi = 0.8$;

 $\delta_{1.p.p}$ – границы допускаемой погрешности измерений реактивной электрической энергии при в рабочих условиях применения $I=0,1\cdot I_{\text{ном}}$ для $\sin\phi=0,6$;

 $\delta_{2.p,p}$ – границы допускаемой погрешности измерений реактивной электрической энергии в рабочих условиях применения при $I = I_{\text{ном}}$ для $\sin \phi = 0.6$;

Номинальная функция преобразования измерительных каналов, образованных совместным действием (преобразованием) ИИК, УСПД и сервера ИВК, равна при измерении:

$$W_{P}(W_{Q}) = \frac{N}{2 \cdot A} \cdot K_{TH} \cdot K_{TT}$$

$$P(Q) = \frac{N}{2 \cdot A} \cdot \frac{60}{T_{\text{M}}} \cdot K_{\text{TH}} \cdot K_{\text{TT}}$$

где: N — число импульсов в регистре профиля мощности электросчетчика, имп; A — постоянная электросчетчика, имп/кBт·ч (квар·ч);

К_{тн} – коэффициент трансформации измерительного трансформатора напряжения (ТН);

 K_{TT} – коэффициент трансформации измерительного трансформатора тока (TT);

Т_и – время интегрирования, мин.

Пределы допускаемой абсолютной погрешности измерений времени ± 5 с. Нормальные условия применения:

– температура окружающего воздуха, °С	21 25;
– относительная влажность воздуха, %	30 80;
– атмосферное давление, кПа (от 630 до 795 мм рт. ст.)	84 106;
 напряжение питающей сети переменного тока, В 	215,6 224,4;
 частота питающей сети переменного тока, Гц 	49,85 - 50,15;
– индукция внешнего магнитного поля, мТл не более	0,05.
Рабочие условия применения:	
 напряжение питающей сети переменного тока, В 	198 242
– частота питающей сети, Гц	49 51
– температура (для ТН и ТТ), °C	[-30]40
– температура (для счетчиков), °C:	[-10]40
температура (для сервера, APM, каналообразующего	
и вспомогательного оборудования), °С	1040
 индукция внешнего магнитного поля (для счётчиков), мТл 	0 0,5
Среднее время наработки на отказ	6048 ч
Средний срок службы	15 лет

Знак утверждения типа

Знак утверждения типа наносится с помощью принтера на титульные листы (место нанесения – вверху, справа) эксплуатационной документации АИИС КУЭ ОАО «Криолит».

Комплектность средства измерений

В комплект АИИС КУЭ ОАО «Криолит» входят технические средства и документация, представленные в таблицах 3 и 4 соответственно.

Таблица 3 – Технические средства

$N_{\underline{0}}$	Наименование	Обозначение	Кол-во
1	Трансформатор тока	ТЛМ-10	4
2	Трансформатор тока	ТЛК-10	4
3	Трансформатор напряжения	НАМИТ-10-2	2
4	Трансформатор напряжения	НТМИ-6-66	2
5	Счётчик электрической энергии	ПСЧ-4ТМ.05М	4
6	Устройство сбора и передачи данных	ЭКОМ-3000Т	1
7	Модем для выделенной линии	AnCom STF/D5020i/105	4
8	GSM-модем	Siemens MC-35i Terminal	1
9	Коммутатор	HP Switch V1405-16	1
10	APM		1
11	Сервер ИВК	HP Proliant DL120R06 G6950 NHP	1
12	Преобразователь Ethernet/RS-485	Moxa N-port 5232	1
13	Источник бесперебойного питания	APC Smart-UPS 1000 VA RM 2U	1

Таблица 4 – Документация

№	Таолица 4 – документация Наименование	Кол-во
	Система автоматизированная информационно-измерительная коммерческого	1
1	учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» – АИИС КУЭ ОАО «Криолит». Технорабочий проект. АИ-ИС.411711.3165.	1
2	Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» — АИИС КУЭ ОАО «Криолит». Инструкция по эксплуатации. АИ-ИС.411711.3165.ИЭ.	1
3	Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» — АИИС КУЭ ОАО «Криолит». Руководство пользователя. АИ-ИС.411711.3165.И3.	1
4	Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» — АИИС КУЭ ОАО «Криолит». Технологическая инструкция. АИ-ИС.411711.3165.И2.	1
5	Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» – АИИС КУЭ ОАО «Криолит». Инструкция по формированию и ведению базы данных. АИИС.411711.3165.И4.	1
6	Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» – АИИС КУЭ ОАО «Криолит». Перечень (массив) входных данных. АИИС.411711.3165.П3.	1
7	Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» — АИИС КУЭ ОАО «Криолит». Перечень выходных данных. АИ-ИС.411711.3165.В8.	
8	Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» – АИИС КУЭ ОАО «Криолит». Паспорт-формуляр. АИ-ИС.411711.3165.ФО.	1
9	Документация по программному обеспечению ПК «Энергосфера»	1
10	Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» – АИИС КУЭ ОАО «Криолит». Методика поверки.	1

Поверка

осуществляется по методике поверки МП 48124-11 «Система автоматизированная информационно-измерительная коммерческого учета электрической энергии (мощности) ОАО «Южно-Уральский криолитовый завод» – АИИС КУЭ ОАО «Криолит». Методика поверки», утвержденной руководителем ГЦИ СИ ФБУ «Пензенский ЦСМ» 17 октября 2011 г.

Рекомендуемые средства поверки и требуемые характеристики:

— мультиметр «Ресурс-ПЭ». Пределы допускаемой абсолютной погрешности измерений угла фазового сдвига между напряжениями \pm 0,1 °. Пределы допускаемой относительной погрешности измерений напряжения: \pm 0,2 % (в диапазоне измерений от 15 до 300 В); \pm 2,0 % (в диапазоне измерений от 15 до 150 мВ). Пределы допускаемой относительной погрешности измерений тока: \pm 1,0 % (в диапазоне измерений от 0,05 до 0,25 А); \pm 0,3 % (в диапазоне измерений от 0,25 до 7,5 А). Пределы допускаемой абсолютной погрешности измерений частоты \pm 0,02 Γ ц;

— радиочасы PЧ-011. Пределы допускаемой погрешности синхронизации времени со шкалой UTC (SU) \pm 0,1 с.

Сведения о методиках (методах) измерений

Методика измерений электрической энергии с использованием АИИС КУЭ ОАО «Криолит». Свидетельство об аттестации №01.00230/20-2011 от 03.10.2011 г.

Нормативные и технические документы, устанавливающие требования к АИИС КУЭ ОАО «Криолит»

- 1 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- $2\ \Gamma OCT\ P\ 8.596-2002\ \Gamma CИ$. Метрологическое обеспечение измерительных систем. Основные положения

Рекомендации по областям применения в сферах государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «Роспроект-Инжиниринг»

Юридический адрес: 150047, г. Ярославль, ул. Лермонтова, д. 44а, кв. 14. Почтовый адрес: 150054, г. Ярославль, ул. Тургенева, д. 17, оф. 602-620.

Тел/факс: (4852) 58-11-75, 58-11-73

e-mail: info@rospi.ru

Испытательный центр

ГЦИ СИ Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в Пензенской области» (ФБУ «Пензенский ЦСМ»)

Адрес: 440028, г. Пенза, ул. Комсомольская, д. 20; www.penzacsm.ru

Телефон/факс: (8412) 49-82-65, e-mail: pcsm@sura.ru

Аттестат аккредитации: ГЦИ СИ ФБУ «Пензенский ЦСМ» зарегистрирован в Государственном реестре средств измерений под № 30033-10.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е. Р. Петросян

М.п. «___» _____ 2011 г.