

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.004.A № 43789

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва"

ЗАВОДСКОЙ НОМЕР 00501-411711-46

ИЗГОТОВИТЕЛЬ

Оренбургский филиал ООО "Газпром энерго", г. Москва

РЕГИСТРАЦИОННЫЙ № 47701-11

ДОКУМЕНТ НА ПОВЕРКУ МП 47701-11

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **16 сентября 2011 г.** № **4992**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель І	уководителя
Федерального	агентства

Е.Р.Петросян

"...... 2011 г.

№ 001858

Серия СИ

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва"

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва" (далее - АИИС КУЭ), предназначена для измерения активной и реактивной энергии, потребленной за установленные интервалы времени отдельными технологическими объектами ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва", а также для автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации. Выходные данные системы используются для коммерческих расчетов.

Описание средства измерений

АИИС КУЭ представляет собой многофункциональную, 3х-уровневую систему, которая состоит из измерительных каналов (далее – ИК), информационно-вычислительного комплекса электроустановки (далее – ИВКЭ) и информационно-вычислительного комплекса (ИВК) с системой обеспечения единого времени (далее – СОЕВ). АИИС КУЭ установлена для коммерческого учета электрической энергии ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва".

АИИС КУЭ включает в себя следующие уровни:

Уровень ИК, включающий измерительные трансформаторы тока (далее – TT) по ГОСТ 7746-2001, измерительные трансформаторы напряжения (далее – TH) по ГОСТ 1983-2001 и счетчики активной и реактивной электроэнергии типа СЭТ-4ТМ-03 класса точности 0,5S в части активной электроэнергии и класса точности 1,0 в части реактивной электроэнергии и типа СЭТ-4ТМ-03М по ГОСТ Р 52323-2005 (в части активной электроэнергии), и по ГОСТ Р 52425-2005 (в части реактивной электроэнергии); вторичные электрические цепи; технические средства каналов передачи данных. Метрологические и технические характеристики измерительных компонентов АИИС КУЭ приведены в таблицах 2-4.

Уровень ИВКЭ – информационно-вычислительный комплекс электроустановки, включающий в себя устройство сбора и передачи данных (далее – УСПД) типа RTU-327, устройство синхронизации системного времени (далее – УССВ) и автоматизированное рабочее место (APM) диспетчера, программное обеспечение (далее – Π O).

Уровень ИВК – информационно-вычислительный комплекс АИИС КУЭ, включающий в себя каналообразующую аппаратуру, сервер баз данных (БД) АИИС КУЭ, автоматизированные рабочие места персонала (АРМ) и ПО «АльфаЦЕНТР».

Первичные токи и напряжения трансформируются измерительными трансформаторами в аналоговые сигналы низкого уровня, которые по проводным линиям связи поступают на соответствующие входы электронного счетчика электрической энергии. В счетчике мгновенные значения аналоговых сигналов преобразуют в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются мгновенные значения активной и полной мощности, которые усредняются за период 0,02 с. Средняя за период реактивная мощность вычисляется по средним за период значениям активной и полной мощности.

Электрическая энергия, как интеграл по времени от средней за период 0,02 с мощности, вычисляется для интервалов времени 30 мин.

Средняя активная (реактивная) электрическая мощность вычисляется как среднее значение мощности на интервале времени усреднения 30 мин.

Цифровой сигнал с выходов счетчиков по проводным линиям связи поступает на выходы УСПД, где выполняется дальнейшая обработка измерительной информации, вычисление электроэнергии и мощности с учетом коэффициентов трансформации ТТ и ТН, осуществляется ее хранение, накопление и передача накопленных данных на уровень ИВК через основной спутниковый канал и резервные каналы передачи данных; GSM-модем и коммутируемый модем.

На верхнем – третьем уровне системы выполняется дальнейшая обработка измерительной информации, в частности, формирование и хранение поступающей информации, оформление справочных и отчетных документов. Передача информации в организации—участники оптового рынка электроэнергии осуществляется от сервера БД по коммутируемым телефонным линиям или сотовой связи через интернет-провайдера.

Программное обеспечение (ПО) АИИС КУЭ на базе программного комплекса (ПК) «АльфаЦЕНТР», версия 11.02.02 функционирует на нескольких уровнях:

- программное обеспечение ИВКЭ;
- программное обеспечение ИВК.

ПО предназначено для автоматического сбора, обработки и хранения данных, получаемых со счетчиков электроэнергии, отображения полученной информации в удобном для анализа и отчетности виде, взаимодействии со смежными системами. ПО обеспечивает защиту измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое ПО.

АИИС КУЭ имеет систему обеспечения единого времени (СОЕВ), которая охватывает уровень счетчиков, УСПД и ИВК (сервера БД). АИИС КУЭ оснащена устройством синхронизации системного времени на основе УССВ-35HVS, синхронизирующего собственное время по сигналам поверки времени, получаемым от GPS-приемника, входящего в состав УССВ-35HVS. Время УСПД синхронизировано с временем GPS-приемника, сличение ежесекундное, погрешность синхронизации не более 16 мс, корректировка времени выполняется при расхождении времени более чем на ± 2 с. УСПД осуществляет коррекцию времени счетчиков. Сличение времени счетчиков типа СЭТ-4ТМ-03 и СЭТ-4ТМ-03.М с временем УСПД выполняется каждые 30 мин. При сеансе связи УСПД со счетчиком, и корректировка времени осуществляется УСПД автоматически при обнаружении рассогласования времени УСПД и счетчиком более чем на ± 2 с, но не чаще чем раз в сутки. Погрешность системного времени не более ± 5 с.

Программное обеспечение

В АИИС КУЭ используется программный комплекс (ПК) «АльфаЦЕНТР» версии 11.02.02, в состав которого входят программные модули, указанные в таблице 1. ПК «Альфа-ЦЕНТР» обеспечивают защиту программного обеспечения и измерительной информации паролями в соответствии с правами доступа. Средством защиты данных при передаче является кодирование данных, обеспечиваемое программными средствами ПК «АльфаЦЕНТР».

Таблица 1 – Идентификационные данные программного обеспечения (ПО) ЦЕНТР»

Наименова- ние про- граммного обеспечения	Наименование программного модуля (идентификационное наименование программного обеспечения)	Наименова- ние файла	Номер вер- сии про- граммного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
	Программа – планировщик опроса и передачи данных	Amrserver.exe		582b756b2098a 6dabbe52eae57 e3e239	MD5
ПО «Альфа- ЦЕНТР»	Драйвер ручного опроса счетчиков и УСПД	Amrc.exe		b3bf6e3e5100c 068b9647d2f9b fde8dd	MD5
	Драйвер автоматического опроса счетчиков и УСПД	Amra.exe	11.02.02	764bbe1ed8785 1a0154dba8844 f3bb6b	MD5
	Драйвер работы с БД	Cdbora2.dll		7dfc3b73d1d1f 209cc4727c965 a92f3b	MD5
	Библиотека шифрования пароля счетчиков A1700,A1140	encryptdll.dll		0939ce05295fb cbbba400eeae8 d0572c	MD5
	Библиотека сооб- щений планиров- щика опросов	alphamess.dll		b8c331abb5e34 444170eee9317 d635cd	MD5

ПО на базе «АльфаЦЕНТР» внесено в Госреестр СИ РФ в составе комплекса измерительно-вычислительного для учета электрической энергии «АльфаЦЕНТР», № 44595-10;

Предел допускаемой дополнительной абсолютной погрешности ИВК «АльфаЦЕНТР», получаемой за счет математической обработки измерительной информации, составляет 1 единицу младшего разряда измеренного (учтенного) значения;

Пределы допускаемых относительных погрешностей по активной и реактивной электроэнергии не зависят от способов передачи измерительной информации и способов организации измерительных каналов ИВК «АльфаЦЕНТР»;

Защита ΠO от непреднамеренных и преднамеренных изменений соответствует уровню «С» по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительных каналов и их метрологические характеристики приведены в таблицах 2-4

Таблица 2 – Состав измерительных каналов

			Состав измерительного канала				
№ п/п	Номер точки измерений	Наименование объекта	TT	ТН	Счетчик	УСПД	Вид электро- энергии
1	1	ПС 110/6 кВ № 096 КС-9, Секция I, Ячейка 47	ТОЛ-10 Кл. т. 0,5 3000/5 Зав. № 7151 Зав. № 7150 Зав. № 7193	3HOЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2369 Зав. № 2388 Зав. № 2387	СЭТ-4ТМ-03.01 Кл. т. 0,5S/1,0 Зав. № 0107081707		актив- ная, реактив- ная
2	2	ПС 110/6 кВ № 096 КС-9, Секция I, Ячейка 48 ШАР	ТПЛ-10 Госреестр Кл. т. 0,5 300/5 Зав. № 8406 - Зав. № 8389	3HOЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2369 Зав. № 2388 Зав. № 2387	СЭТ-4ТМ-03.01 Кл. т. 0,5S/1,0 Зав. № 107082575		актив- ная, реактив- ная
3	3	ПС 110/6 кВ № 096 КС-9, Секция I, Ячейка 78 Минерал	ТВЛМ-10 Кл. т. 0,5 200/5 Зав. № 29159 - Зав. № 29090	3HOЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2369 Зав. № 2388 Зав. № 2387	СЭТ-4ТМ-03.01 Кл. т. 0,5S/1,0 Зав. № 107082297	RTU-327, 3aB. № 001102	актив- ная, реактив- ная
4	4	ПС 110/6 кВ № 096 КС-9, Секция I, Ячейка 52 Тульские автоматы	ТПЛМ-10 Кл. т. 0,5 100/5 Зав. № б/н - Зав. № б/н	3HОЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2369 Зав. № 2388 Зав. № 2387	СЭТ-4ТМ-03.01 Кл. т. 0,5S/1,0 Зав. № 107082419	RTU-327, 3	актив- ная, реактив- ная
5	5	ПС 110/6 кВ № 096 КС-9, Секция II, Ячейка 57	ТОЛ-10 Кл. т. 0,5 3000/5 Зав. № 6976 Зав. № 6978 Зав. № 7153	3HOЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2240 Зав. № 2243 Зав. № 2235	СЭТ-4ТМ-03М Кл. т. 0,2S/0,5 Зав. № 812104515		актив- ная, реактив- ная
6	6	ПС 110/6 кВ № 096 КС-9, Секция II, Ячейка 6 Щёкинская горсеть	ТПОЛ-10 Кл. т. 0,5S 300/5 Зав. № 2854 Зав. № 2855 Зав. № 1560	3HOЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2240 Зав. № 2243 Зав. № 2235	СЭТ-4ТМ-03.01 Кл. т. 0,5S/1,0 Зав. № 107082510		актив- ная, реактив- ная

Окончание таблицы 2

		таолицы 2					
ИЗ-	13-		Co	остав измерительно	ого канала		
ле п/п Номер точки 1	помер точки мерений	Наименование объекта	TT	ТН	Счетчик	УСПД	Вид электро- энергии
7	7	ПС 110/6 кВ № 096 КС-9, Секция II, Ячейка 2	ТПОЛ-10 Кл. т. 0,5S 100/5 Зав. № 2866 Зав. № 2954 Зав. № 2952	3HOЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2240 Зав. № 2243 Зав. № 2235	СЭТ-4ТМ-03М Кл. т. 0,2S/0,5 Зав. № 0812104852	102	актив- ная, реактив- ная
8	8	ПС 110/6 кВ № 096 КС-9, Секция II, Ячейка 8	ТПОЛ-10 Кл. т. 0,5S 300/5 Зав. № 1566 Зав. № 2212 Зав. № 2209	ЗНОЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2240 Зав. № 2243 Зав. № 2235	СЭТ-4ТМ-03М Кл. т. 0,2S/0,5 Зав. № 0812104527	RTU-327, 3aв. № 001102	актив- ная, реактив- ная
9	9	ПС 110/6 кВ № 096 КС-9, Секция I, Ячейка 40	ТОЛ-10 Кл. т. 0,5S 300/5 Зав. № 17009 Зав. № 17010 Зав. № 17011	3НОЛ.06-6 Кл. т. 0,5 6000/√3/100/√3 Зав. № 2369 Зав. № 2388 Зав. № 2387	СЭТ-4ТМ-03М Кл. т. 0,2S/0,5 Зав. № 812104873	RTU	актив- ная, реактив- ная

Таблица 3 – Метрологические характеристики ИК АИИС КУЭ (активная энергия)

Доверительные границы относительной погрешности результата измерений количества учтён-										
ной активной электрической энергии при доверительной вероятности Р=0,95:							_			
Номер ИК		Основная погрешность ИК, ±%				Погрешность ИК в рабочих условиях эксплуатации, ±%				
TIOMED TIK	диапазон	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$	•	$\cos \varphi =$	$\cos \varphi =$	$\cos \varphi =$		
1	тока 2	1,0	0,87	0,8 5	0,5 6	1,0	0,87 8	9	0,5	
1	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	1,8	2,5	2,9	5,5	2,2	2,8	3,2	5,6	
1-4	$0.2I_{\rm H_1} \leq I_1 < I_{\rm H_1}$	1,2	1,5	1,7	3,0	1,6	1,9	2,1	3,2	
	Iн ₁ ≤ I ₁ ≤ 1,2Iн ₁	1,0	1,2	1,3	2,3	1,5	1,7	1,8	2,6	
	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	1,8	2,4	2,8	5,4	1,9	2,5	2,9	5,5	
5	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,1	1,4	1,6	2,9	1,2	1,5	1,7	3,0	
	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	0,9	1,1	1,2	2,2	1,0	1,2	1,4	2,3	
	$\begin{array}{c} 0.02 I_{H_1} \leq I_1 < \\ 0.05 I_{H_1} \end{array}$	1,9	2,4	2,7	4,9	2,2	2,7	3,0	5,0	
6	$\begin{array}{c} 0,\!05I_{H_1}\!\leq\!I_1\!<\!\\ 0,\!2I_{H_1} \end{array}$	1,2	1,5	1,7	3,1	1,6	1,9	2,1	3,4	
0	$0.2I_{H_1} \le I_1 < I_{H_1}$	1,0	1,2	1,3	2,3	1,5	1,7	1,8	2,6	
	$I_{H_1} \leq I_1 \leq 1, 2I_{H_1}$	1,0	1,2	1,3	2,3	1,5	1,7	1,8	2,6	
	$\begin{array}{c} 0,02I_{H_{1}} \leq I_{1} < \\ 0,05I_{H_{1}} \end{array}$	1,6	2,2	2,5	4,8	1,7	2,3	2,6	4,8	
7-9	$\begin{array}{c} 0.05 I_{H_1} \leq I_1 < \\ 0.2 I_{H_1} \end{array}$	1,1	1,4	1,6	3,0	1,2	1,5	1,7	3,0	
	$0.2I_{H_1} \le I_1 < I_{H_1}$	0,9	1,1	1,2	2,2	1,0	1,2	1,4	2,3	
	Iн ₁ ≤ I ₁ ≤ 1,2Iн ₁	0,9	1,1	1,2	2,2	1,0	1,2	1,4	2,3	

Таблица 4 – Метрологические характеристики ИК АИИС КУЭ (реактивная энергия)

Доверительные границы относительной погрешности результата измерений количества учтённой реактивной электрической энергии при доверительной вероятности P=0,95:								
non pourme			Основная погрешность ИК, ±%			Погрешность ИК в рабочих условиях эксплуатации, ±%		
Номер ИК	диапазон тока	$\cos \varphi = 0.87$ $(\sin \varphi = 0.5)$	$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$	$\cos \varphi = 0.5$ $(\sin \varphi = 0.87)$	$\cos \varphi = 0.87$ $(\sin \varphi = 0.5)$	$\cos \varphi = 0.8$ $(\sin \varphi = 0.6)$	$\cos \varphi = 0.5$ $(\sin \varphi = 0.87)$	
1	2	3	4	5	6	7	8	
	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	5,8	4,7	2,9	6,2	5,1	3,4	
1-4	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	3,2	2,6	1,8	3,5	2,9	2,2	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	2,5	2,1	1,5	2,7	2,4	2,0	
	$0.05I_{\rm H_1} \le I_1 < 0.2I_{\rm H_1}$	5,6	4,4	2,5	5,7	4,6	2,8	
5	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	3,0	2,4	1,5	3,3	2,7	1,9	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	2,3	1,9	1,2	2,6	2,2	1,7	
	$\begin{array}{c} 0.02 I_{H_1} \leq I_1 < \\ 0.05 I_{H_1} \end{array}$	6,0	4,9	3,2	7,1	5,9	4,2	
6	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	3,6	3,0	2,1	4,2	3,6	2,7	
U	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	2,5	2,1	1,6	2,9	2,5	2,0	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	2,5	2,1	1,5	2,7	2,4	2,0	
	$0.02I_{\rm H_1} \le I_1 < 0.05I_{\rm H_1}$	5,0	4,0	2,4	5,1	4,1	2,7	
7-9	$0.05I_{H_1} \le I_1 < 0.2I_{H_1}$	3,2	2,5	1,5	3,4	2,8	1,9	
1-7	$0.2I_{\rm H_1} \le I_1 < I_{\rm H_1}$	2,3	1,9	1,2	2,6	2,2	1,7	
	$I_{H_1} \le I_1 \le 1,2I_{H_1}$	2,3	1,9	1,2	2,6	2,2	1,7	

Примечания:

- 1. Характеристики погрешности ИК даны для измерения электроэнергии и средней мощности (получасовая);
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95;
 - 3. Нормальные условия:
- параметры сети: диапазон напряжения $(0.98 \div 1.02)$ Uном; диапазон силы тока $(1 \div 1.2)$ Іном, коэффициент мощности $\cos \phi$ ($\sin \phi$) = 0.87 (0.5) инд.;); частота (50 ± 0.15) Γ ц;
 - температура окружающей среды (20 ± 5) °C.
 - 4. Рабочие условия:

для ТТ и ТН:

- параметры сети: диапазон первичного напряжения $(0.9 \div 1.1)$ Uном; диапазон силы первичного тока $(0.05 (0.02) \div 1.2)$ Іном₁; коэффициент мощности $\cos \varphi (\sin \varphi) 0.5 \div 1.0(0.5 \div 0.87)$; частота (50 ± 0.4) Γ ц;
 - температура окружающего воздуха от $-40\,^{\circ}\text{C}$ до $+50\,^{\circ}\text{C}$.

Для электросчетчиков:

- параметры сети: диапазон вторичного напряжения $(0.9 \div 1.1)$ UH₂; диапазон силы вторичного тока $(0.05 \div 1.2)$ IH₂; коэффициент мощности $\cos \phi (\sin \phi)$ $0.5 \div 1.0(0.5 \div 0.87)$; частота (50 ± 0.4) Γ ц;
 - температура окружающего воздуха от $+ 15 \, ^{\circ}\text{C}$ до $+ 30 \, ^{\circ}\text{C}$;
 - магнитная индукция внешнего происхождения, не более 0,5 мТл.

Для аппаратуры передачи и обработки данных:

- параметры питающей сети: напряжение (220 ± 10) B; частота (50 ± 0.5) Γ ц;
- температура окружающего воздуха от + 10 °C до + 35 °C.
- относительная влажность воздуха (70 ± 5) %;
- атмосферное давление $(100 \pm 4) \ \kappa \Pi a$.
- 5. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии по ГОСТ Р 52323-2005 в режиме измерения активной электроэнергии, ГОСТ Р 52425-2005 в режиме измерения реактивной электроэнергии;
- 6. Допускается замена измерительных трансформаторов и счетчиков на аналогичные (см. п. 5 Примечаний) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в таблице 2. Замена оформляется актом в установленном на ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва" порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Оценка надежности АИИС КУЭ в целом:

 $K_{\Gamma AUUC} = 0.99 - коэффициент готовности;$

То ик (АИИС) = 5599 ч – среднее время наработки на отказ.

Надежность применяемых в системе компонентов:

- в качестве показателей надежности измерительных трансформаторов тока и напряжения, в соответствии с ГОСТ 1983-2001 и ГОСТ 7746-2001, определены средний срок службы и средняя наработка на отказ;
- электросчётчик СЭТ-4ТМ.03М- среднее время наработки на отказ не менее Т = 140~000 ч, среднее время восстановления работоспособности tb = 2 ч;
- электросчетчик СЭТ-4ТМ.03 среднее время наработки на отказ не менее $T=90\,000\,$ ч, среднее время восстановления работоспособности $t = 2\,$ ч;
- УСПД среднее время наработки на отказ не менее $T=40\ 000\ \text{ч}$, среднее время восстановления работоспособности $t = 2\ \text{ч}$;
- сервер среднее время наработки на отказ не менее T=100000 ч, среднее время восстановления работоспособности tb =1 ч.

Надежность системных решений:

- резервирование каналов связи: информация о результатах измерений может передаваться в организации-участники оптового рынка электроэнергии по электронной почте;
- Стойкость к электромагнитным воздействиям;
- Ремонтопригодность;
- Программное обеспечение отвечает требованиям ISO 9001;
- Функции контроля процесса работы и средства диагностики системы;
- Резервирование электропитания оборудования системы.

Регистрация событий:

- журнал событий счетчика:
 - параметрирование;
 - пропадание напряжения;
 - коррекция времени в счетчике.
- журнал событий ИВКЭ:
 - параметрирование;
 - пропадание напряжения;
 - коррекция времени в УСПД.
- журнал событий ИВК:
 - даты начала регистрации измерений;
 - перерывы электропитания;
 - программные и аппаратные перезапуски;
 - установка и корректировка времени;
 - переход на летнее/зимнее время;
 - нарушение защиты ИВК;
 - отсутствие/довосстановление данных с указанием точки измерений и соответствующего интервала времени.

Защищенность применяемых компонентов:

- механическая защита от несанкционированного доступа и пломбирование:
 - электросчетчиков;
 - промежуточных клеммников вторичных цепей напряжения;
 - испытательных коробок;
 - УСПД;
 - сервера БД;
- защита информации на программном уровне:
 - результатов измерений при передаче информации (возможность использования цифровой подписи);
 - установка пароля на счетчик;
 - установка пароля на промконтроллер (УСПД);
 - установка пароля на сервер БД.

Глубина хранения информации:

- электросчетчик тридцатиминутный профиль нагрузки в двух направлениях не менее 30 дней; при отключении питания не менее 35 суток;
- ИВКЭ суточные данные о тридцатиминутных приращениях электропотребления по каждому каналу и электропотребление за месяц по каждому каналу не менее 35

дней; при отключении питания – не менее 35 суток;

• ИВК – хранение результатов измерений и информации состояний средств измерений – не менее 3.5 лет.

Знак утверждения типа

наносится на титульные листы эксплуатационной документации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва" типографским способом.

Комплектность средства измерений

В комплект поставки входит техническая документация на систему и на комплектующие средства измерений.

Комплектность АИИС КУЭ представлена в таблице 5.

Таблица 5 Комплектность АИИС КУЭ ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва"

Наименование	Количество
Измерительные трансформаторы тока ТОЛ-10; ТПЛ-10; ТВЛМ-10; ТПЛМ-10; ТПОЛ-10;	24 шт.
Измерительные трансформаторы напряжения ЗНОЛ.06-6	6 шт.
Счетчик электрической энергии многофункциональный СЭТ-4TM-03.М и СЭТ-4TM-03	9 шт.
УСПД RTU-327	1 шт.
ПК «АльфаЦЕНТР»»	1 шт.
Методика поверки	1 шт.
Руководство по эксплуатации	1 шт.
Формуляр	1 шт.

Поверка

осуществляется по документу «Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва". Измерительные каналы. Методика поверки», утвержденному ГЦИ СИ ФГУП «ВНИИМС» в июле 2011 г.

Средства поверки – по НД на измерительные компоненты:

- TT по ГОСТ 8.217-2003 «Государственная система обеспечения единства измерений. Трансформаторы тока. Методика поверки»;
- ТН по МИ 2845-2003 «ГСИ Измерительные трансформаторы напряжения 6√3...35 кВ. Методика проверки на месте эксплуатации» и/или по ГОСТ 8.216-88 «Государственная система обеспечения единства измерений. Трансформаторы напряжения. Методика поверки»;
- Счетчики типа СЭТ-4ТМ.03 в соответствии с методикой поверки ИЛГШ.411152.124 РЭ1, являющейся приложением к руководству по эксплуата-

- ции ИЛГШ.411152.124 РЭ. Методика поверки согласована с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 10 сентября 2004 года;
- Счетчики типа СЭТ-4ТМ.03М в соответствии с методикой поверки ИЛГШ.411152.145РЭ1, являющейся приложением к руководству по эксплуатации ИЛГШ.411152.145РЭ. Методика поверки согласована с руководителем ГЦИ СИ ФГУ «Нижегородский ЦСМ» 04 декабря 2007 года;
- УСПД RTU-327 по документу «Комплексы аппаратно-программных средств для учета электроэнергии на основе УСПД серии RTU-300. Методика поверки», утвержденному ГЦИ СИ ВНИИМС в 2003 г.;
- радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), номер в Государственном реестре средств измерений № 27008-04;
- переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы и с ПО для работы с радиочасами МИР РЧ-01

Сведения о методиках (методах) измерений

Метод измерений изложен в документе «Руководство по эксплуатации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИ-ИС КУЭ) ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва".

Нормативные и технические документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва"

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Основные положения».

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия».

ГОСТ Р 52323-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».

ГОСТ Р 52425-2005 «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».

ГОСТ 34.601-90 «Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания».

Руководство по эксплуатации на систему автоматизированную информационно-измерительную коммерческого учета электроэнергии (АИИС КУЭ) ООО "Газпром энерго" КС-9 Тульское УМГ филиал ООО "Газпром трансгаз Москва".

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

Оренбургский филиал ООО «Газпром энерго»

Юридический адрес: 117939, г. Москва, ул. Строителей, дом 8, корп. 1

Тел.: (495) 719-83-73

Заявитель

ООО «Сервис-Метрология»

Юридический адрес: 119119, г. Москва, Ленинский пр-т, 42, 1-2-3 Почтовый адрес: 119119, г. Москва, Ленинский пр-т, 42, 25-35

Тел. (499) 755-63-32

Испытательный центр

Федеральное государственное унитарное предприятие «Всероссийский научноисследовательский институт метрологической службы» (ФГУП «ВНИИМС») Юридический адрес:

119361, г. Москва ул. Озерная, д. 46

тел./факс: 8(495)437-55-77

Аттестат аккредитации государственного центра испытаний № 30004-08 от 27.06.2008 г.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р.Петросян