

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

RU.E.34.010.A № 43691

Срок действия бессрочный

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО "ВОЛМА-ВТР"

ЗАВОДСКОЙ НОМЕР 011

ИЗГОТОВИТЕЛЬ
ООО "ПКФ "Тенинтер", г.Москва

РЕГИСТРАЦИОННЫЙ № 47641-11

ДОКУМЕНТ НА ПОВЕРКУ МП 1047/446 2011

интервал между поверками 4 года

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от **06 сентября 2011 г.** № **4782**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства		Е.Р. Петрося
	""	2011 г.

Серия СИ

№ 001719

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «ВОЛМА-ВТР»

Назначение средства измерений

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «ВОЛМА-ВТР» (далее по тексту – АИИС КУЭ) предназначена для измерения активной и реактивной электроэнергии, для осуществления эффективного автоматизированного коммерческого учета и контроля выработки и потребления электроэнергии и мощности по точкам поставки, а также регистрации параметров электропотребления, формирования отчетных документов и передачи информации в ОАО «АТС», Филиал ОАО «СО ЕЭС» Волгоградское РДУ, ООО «ГАРАНТ ЭНЕРГО» в соответствии с требованиями регламентов ОРЭМ.

Полученные данные и результаты измерений используются для расчета учетных показателей в точках поставки согласованных со смежными субъектами ОРЭМ, а также могут использоваться для оперативного управления энергопотреблением.

Описание средства измерений

АИИС КУЭ, построена на основе ИВК «Альфа Центр» (Госреестр № 44595-10) и представляет собой автоматизированную измерительную систему с централизованным управлением и распределенной функцией измерения.

Измерительно-информационные комплексы (ИИК) АИИС КУЭ состоят из двух уровней:

1-ый уровень – измерительные каналы (ИК), который включает в себя измерительные трансформаторы напряжения (ТН), измерительные трансформаторы тока (ТТ), многофункциональные счетчики активной и реактивной электрической энергии (далее по тексту – счетчики), вторичные измерительные цепи.

2-ой уровень – информационно-вычислительный комплекс (ИВК), который включает в себя сервер базы данных (СБД), устройство синхронизации системного времени (УССВ), автоматизированное рабочее место оператора (АРМ), технические средства приема-передачи данных, каналы связи для обеспечения информационного взаимодействия между уровнями системы, а также совокупность аппаратных, каналообразующих и программных средств, выполняющих сбор информации с нижних уровней, ее обработку и хранение.

В качестве СБД используется компьютер на базе серверной платформы DELL Power Edge R210 с программным обеспечением ИВК «Альфа Центр».

АИИС КУЭ решает следующие задачи:

- измерение 30-минутных приращений активной и реактивной электроэнергии;
- периодический (1 раз в 30 мин) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;

- передача результатов измерений смежным субъектам OPЭM в соответствии с требованиями регламентов OPЭM;
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровне (установка паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИ-ИС КУЭ;
- конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени в АИИС КУЭ (коррекция времени);
- передача журналов событий счетчиков.

Принцип действия:

Первичные токи и напряжения преобразуются измерительными трансформаторами в аналоговые унифицированные сигналы, которые по проводным линиям связи поступают на измерительные входы счетчика электроэнергии. В счетчике мгновенные значения аналоговых сигналов преобразуются в цифровой сигнал. По мгновенным значениям силы электрического тока и напряжения в микропроцессоре счетчика вычисляются соответствующие мгновенные значения активной, реактивной и полной мощности без учета коэффициентов трансформации. Электрическая энергия, как интеграл по времени от мощности, вычисляется для интервалов времени 30 мин.

Для получения информации со счетчиков СБД формирует запрос. Счетчик в ответ, по информационным линиям связи интерфейса RS-485 и GSM-модем, пересылает данные на СБД. СБД при помощи программного обеспечения (ПО «Альфа-Центр») осуществляет сбор, обработку измерительной информации (умножение на коэффициенты трансформации), формирование, хранение, оформление справочных и отчетных документов и последующую передачу информации по каналам связи Internet в ОАО «АТС», Филиал ОАО «СО ЕЭС» Волгоградское РДУ, ООО «ГАРАНТ ЭНЕРГО» и смежным субъектам ОРЭМ в соответствии с требованиями регламентов ОРЭМ.

АИИС КУЭ ООО «ВОЛМА-ВТР» оснащена системой обеспечения единого времени (СОЕВ). СОЕВ выполняет законченную функцию измерений времени, имеет нормированные метрологические характеристики и обеспечивает автоматическую синхронизацию времени. Для обеспечения единства измерений используется единое календарное время. В СОЕВ входят все средства измерений времени (таймеры счетчиков, СБД).

В качестве базового прибора СОЕВ используется УССВ-16 HVS, который подключен к СБД. Измерение времени в АИИС КУЭ происходит автоматически на всех уровнях системы внутренними таймерами устройств, входящих в систему. Коррекция отклонений встроенных часов осуществляется при помощи синхронизации таймеров устройств с единым временем, поддерживаемым УССВ.

Сличение времени СБД со временем УССВ происходит непрерывно. Коррекция времени в СБД осуществляется непрерывно. Полученное от УССВ точное время, при помощи программного обеспечения СБД ПО Альфа-Центр АС_Т, устанавливается на СБД.

Сличение времени СБД со временем счётчиков происходит при обращении к счётчикам, при этом СБД, 1 раз в сутки, при этом корректировка времени осуществляется при расхождении времени счетчиков с временем СБД на величину более ± 1 с.

Предел допускаемой абсолютной погрешности хода часов АИИС КУЭ ООО «ВОЛМА-ВТР»: ± 5 с/сутки.

Программное обеспечение

В состав ПО АИИС КУЭ входит: ПО счетчиков электроэнергии и ПО СБД. Программные средства СБД АИИС КУЭ содержат: базовое (системное) ПО, включающее операционную систему, программы обработки текстовой информации, сервисные программы, ПО систем управления базами данных (СУБД) и прикладное ПО ИВК «Альфа Центр», ПО СОЕВ. Состав программного обеспечения АИИС КУЭ ООО «ВОЛМА-ВТР» приведён в таблице 1. Таблица 1

Наименование программного обеспечения	Наименование программного модуля (идентификационное наименование программного обеспечения)	Наименование файла	Номер версии программного обеспечения	Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения	
	Программа- планировщик опроса и передачи данных (стандартный ката- лог для всех модулей C:\alphacenter\exe)	Amrserver.exe		04372271f106385cf 7148acd422eb354		
ПО «Альфа ЦЕНТР»	драйвер ручного опроса счетчиков и УСПД	Amrc.exe	3.27.3.0	be05a81e184a68adf e924628e3d74325	MD5	
	драйвер автоматического опроса счетчиков и УСПД	Amra.exe		69f921b86348de5d0 e192282e7b94337		
	драйвер работы с БД	Cdbora2.dll		cde81805a149c00c3 d0f50eecd201407		
	библиотека сообщений планировщика опросов	alphamess.dll		b8c331abb5e344441 70eee9317d635cd		

ПО ИВК «Альфа Центр» не влияет на метрологические характеристики АИИС КУЭ ООО «ВОЛМА-ВТР».

Уровень защиты программного обеспечения АИИС КУЭ ООО «ВОЛМА-ВТР» от непреднамеренных и преднамеренных изменений соответствует уровню С по МИ 3286-2010.

Метрологические и технические характеристики

Состав измерительно-информационных комплексов АИИС КУЭ ООО «ВОЛМА-ВТР» приведен в Таблице 2.

Границы допускаемой относительной погрешности измерения активной и реактивной электрической энергии в рабочих условиях эксплуатации АИИС КУЭ приведены в Таблице 3.

Таблица 2

		Состав измерительно-информационных комплексов				Вид элек-
№ MMK	Наименование ИИК	Трансформатор тока	Трансформатор напряжения	Счетчик элек- трической энер- гии	Сервер	троэнер- гии
1	2	3	4	5	6	7
1	КПП-1 10 кВ РУ- 10 кВ 1 СШ-10 кВ яч.13	ТЛК 10-5 Кл.т. 0,5S Ктт= 200/5 ф.А №:13654 ф.С №:12062 Госреестр № 9143-01	НАМИТ-10-2 Кл.т. 0,5 Ктт = 10000/100 № 0833 Госреестр № 16687-02	СЭТ-4ТМ.03 Кл.т. 0.2S/0.5 Зав.№ 03051933 Госреестр № 27524-04	DELL Power	Активная Реактивная
2	КПП-1 10 кВ РУ- 10 кВ 2 СШ-10 кВ яч.18	ТЛК 10-5 Кл.т. 0,5S Ктт= 200/5 ф.А №:13661 ф.С №:13676 Госреестр № 9143-01	НАМИТ-10-2 Кл.т. 0,5 Ктт = 10000/100 № 0788 Госреестр № 16687-02	СЭТ-4ТМ.03 Кл.т. 0.2S/0.5 Зав.№ 03051021 Госреестр № 27524-04	Edge R210	Активная Реактивная

Таблина 3

Габлица 3					
Границы допускаемой относительной погрешности измерения активной электрической энер-					
гии	в рабочих	условиях эксп	ілуатации АИІ	ИС КУЭ	
Номер ИИК	COSII	$\delta_{1(2)\%}$,	δ _{5 %} ,	δ _{20 %} ,	$\delta_{100\%},$
Помер иин	сояц	$I_{1(2)} \le I_{_{\rm H3M}} < I_{_{5}} \%$	$\rm I_{5~\%} {\le} \rm I_{_{H3M}} {<} \rm I_{_{20~\%}}$	$I_{20} \% \le I_{_{\rm H3M}} < I_{100} \%$	$I_{100\%} \le I_{_{\rm H3M}} \le I_{120\%}$
	1,0	±1,9	±1,2	±1,0	±1,0
1-2	0,9	±2,2	±1,4	±1,2	±1,2
ТТ-0,5S; ТН-0,5; Сч-	0,8	±2,6	±1,7	±1,4	±1,4
0,2S	0,7	±3,2	±2,1	±1,6	±1,6
	0,5	±4,8	±3,0	±2,3	±2,3
Границы допускаемой относительной погрешности измерения реактивной электриче-					
ской энергии в рабочих условиях эксплуатации АИИС КУЭ					
Номер ИИК	COSII	$\delta_{1(2)\%}$,	δ _{5 %} ,	δ _{20 %} ,	δ _{100 %} ,
Howep HH	СОЅЦ	$I_{2\%} \le I_{M3M} < I_{5\%}$	$I_{5\%} \le I_{_{M3M}} < I_{_{20\%}}$	$I_{20\%} \le I_{M3M} < I_{100\%}$	$I_{100 \%} \le I_{изм} \le I_{120 \%}$
	0,9	±6,8	±4,1	±2,9	±2,9
1-2	0,8	±4,3	±2,7	±2,0	±1,9
ТТ-0,5S; ТН-0,5; Сч-0,5	0,7	±3,6	±2,3	±1,7	±1,7
	0,5	±2,7	±1,8	±1,3	±1,3

Примечания:

- 1. Характеристики относительной погрешности ИИК даны для измерения электроэнергии и средней мощности (30 мин.).
- 2. В качестве характеристик относительной погрешности указаны границы интервала, соответствующие вероятности 0,95.
- 3. Нормальные условия эксплуатации компонентов АИИС КУЭ:
 - напряжение от 0,98·Uном до 1,02·Uном;
 - ток от Іном до 1,2·Іном, $\cos j = 0,9$ инд;
 - температура окружающей среды: (20 ± 5) °C.
- 4. Рабочие условия эксплуатации компонентов АИИС КУЭ:
 - напряжение питающей сети от 0,9-Ином до 1,1-Ином;
 - ток от 0,01·Іном до 1,2·Іном;
 - температура окружающей среды:
 - для счетчиков электроэнергии от плюс 5 до плюс 35 °C;

- для трансформаторов тока по ГОСТ 7746-2001;
- для трансформаторов напряжения по ГОСТ 1983-2001.
- 5. Трансформаторы тока по ГОСТ 7746-2001, трансформаторы напряжения по ГОСТ 1983-2001, счетчики электроэнергии в режиме измерения активной электроэнергии по ГОСТ 30206-94 в режиме измерения реактивной электроэнергии по ГОСТ 26035-83;
- 6. Допускается замена измерительных трансформаторов и счетчиков электроэнергии на аналогичные (см. п. 5 Примечания) утвержденных типов с метрологическими характеристиками не хуже, чем у перечисленных в Таблице 3. Допускается замена компонентов системы на однотипные утвержденного типа. Замена оформляется актом в установленном на объекте порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Параметры надежности применяемых в АИИС КУЭ измерительных компонентов:

• счетчик электроэнергии СЭТ-4ТМ.03 – среднее время наработки на отказ не менее 90000 часов;

Среднее время восстановления, при выходе из строя оборудования:

- для счетчика Тв ≤ 7 часов;
- для сервера Тв ≤ 1 час;

Защита технических и программных средств АИИС КУЭ от несанкционированного доступа:

- клеммники вторичных цепей измерительных трансформаторов имеют возможность пломбирования;
- на счетчиках предусмотрена возможность пломбирование крышки зажимов и откидывающейся прозрачной крышки на лицевой панели счетчика;
- наличие защиты на программном уровне возможность установки многоуровневых паролей на счетчиках, серверах, APM;
- организация доступа к информации ИВК посредством паролей обеспечивает идентификацию пользователей и разграничение прав доступа;
- защита результатов измерений при передаче информации (возможность использования цифровой подписи).

Наличие фиксации в журнале событий счетчика следующих событий

- попытки несанкционированного доступа;
- связь со счетчиком, приведшая к изменению данных;
- факты параметрирования счетчика;
- факты пропадания напряжения;
- изменение значений даты и времени при синхронизации;
- отклонение тока и напряжения в измерительных цепях от заданных пределов;
- отсутствие напряжения при наличии тока в измерительных цепях;
- перерывы питания.

Возможность коррекции времени в:

- счетчиках (функция автоматизирована);
- серверах, АРМ (функция автоматизирована).

Глубина хранения информации:

- счетчик электроэнергии тридцатиминутный профиль нагрузки в двух направлениях не менее 113,7 суток; при отключении питания не менее 10 лет;
- ИВК хранение результатов измерений и информации о состоянии средств измерений за весь срок эксплуатации системы.

Знак утверждения типа

Знак утверждения типа наносится на титульные листы эксплуатационной документации АИИС КУЭ типографским способом.

Комплектность средства измерений

Комплектность АИИС КУЭ приведена в таблице 4 Таблица 4

№ п/п	Наименование	Тип	Количество, шт.
1	2	3	4
1	Трансформатор тока	ТЛК-10-5	4
2	Трансформатор напряжения	НАМИТ-10-2	2
3	Счётчик электрической энергии	CЭT-4TM.03	2
4	Модем	MC52i	1
5	Модем	TELEOFIS RX108-R RS-485	1
6	Сервер	DELL Power Edge R210	1
7	Источник бесперебойного пи- тания	APC Smart-UPS 1500VA	1
8	Устройство синхронизации системного времени	УССВ-35LVS	1
9	Специализированное программное обеспечение	ПО «Альфа-Центр»	1
10	Методика поверки	МП 1047/446-2011	1
11	Паспорт – формуляр	05.2011. ВВТР-АУ.ФО-ПС	1

Поверка

осуществляется по документу МП 1047/446-2011 «ГСИ. Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (мощности) (АИИС КУЭ) OOO «ВОЛМА-ВТР». Методика поверки» утвержденному ГЦИ СИ ФГУ «Ростест-Москва» в июне 2011 г.

Средства поверки – по НД на измерительные компоненты:

- TT πο ΓΟCT 8.217-2003;
- − TH по МИ 2845-2003, МИ 2925-2005 и/или по ГОСТ 8.216-88;
- СЭТ-4ТМ.03 по методике поверки ИЛГШ.411152.124 РЭ согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» в 2004 г.;
- ИВК «Альфа Центр» по методике ДЯИМ.466453.007 МП, утвержденной ГЦИ СИ ВНИИМС в 2010 г.;

- Радиочасы МИР РЧ-01, принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS) (Госреестр № 27008-04);
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками системы, ПО для работы с радиочасами МИР РЧ-01;
- Термометр по ГОСТ 28498, диапазон измерений от минус 40 до плюс 50°С, цена деления 1°С.

Сведения о методиках (методах) измерений

Метод измерений изложен в документе: «Методика (методы) измерений количества электрической энергии (мощности) с использованием системы автоматизированной информационно-измерительной коммерческого учета электроэнергии (АИИС КУЭ) ООО «ВОЛМА-ВТР». Свидетельство об аттестации методики (методов) измерений № 874/446-01.00229-2011 от 30 июня 2011 г.

Нормативные документы, устанавливающие требования к системе автоматизированной информационно-измерительной коммерческого учета электроэнергии (мощности) (АИИС КУЭ) ООО «ВОЛМА-ВТР»

- 1 ГОСТ Р 8.596-2002 ГСИ. Метрологическое обеспечение измерительных систем. Основные положения.
- 2 ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.
- 3 ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания.
 - 4 ГОСТ 7746-2001 Трансформаторы тока. Общие технические условия.
 - 5 ГОСТ 1983-2001 Трансформаторы напряжения. Общие технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Осуществление торговли и товарообменных операций.

Изготовитель

ООО «ПКФ «Тенинтер»

Адрес (юридический): 109202, г. Москва, ул. 3-я Карачаровская, д. 8, корп. 1

Адрес (почтовый): 109444, г. Москва, Ферганская ул., д. 6, стр. 2

Телефон: 8 (495) 788-48-25 Факс: 8 (495) 788-48-25

Заявитель

ООО «ПКФ «Тенинтер»

Адрес (юридический): 109202, г. Москва, ул. 3-я Карачаровская, д. 8, корп. 1

Адрес (почтовый): 109444, г. Москва, Ферганская ул., д. 6, стр. 2

Телефон: 8 (495) 788-48-25 Факс: 8 (495) 788-48-25

Испытательный центр

Федеральное государственное учреждение «Российский центр испытаний и сертификации – Москва» (ФГУ «Ростест-Москва»). Аттестат аккредитации № 30010-10 от 15.03.2010 года.

117418 г. Москва, Нахимовский проспект, 31 Тел.(495) 544-00-00, 668-27-40, (499) 129-19-11 Факс (499) 124-99-96

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.П. «____» ____2011г.