СОГЛАСОВАНО

Руководитель ГЦИ СИ

ФПУ «Татарстанский центр

стандартизации, метрологии и

сертификации»

.М. Аблатыпов

2010г.

Счетчики электрической энергии трехфазные статические Барс-3 Внесены в Государственный реестр средств измерений Регистрационный № 44003-10 Взамен №

Выпускаются по ГОСТ Р 52320-2005 (МЭК 62052-11:2003), ГОСТ Р 52322-2005 (МЭК 62053-21:2003), ГОСТ Р 52323-2005 (МЭК 62053-22:2003), ГОСТ Р 52425-2005 (МЭК 62053-23:2003) и техническим условиям ТУ 4228-006-27833745-2010.

Назначение и область применения

Счетчики электрической энергии трехфазные статические Барс-3 (далее по тексту — счетчики) одно- и многотарифные предназначены для измерения активной или активной и реактивной энергии прямого или прямого и обратного направления в трех- или четырехпроводных трехфазных цепях переменного тока с номинальной частотой 50 Гц.

Счётчики могут применяться автономно или в автоматизированной системе сбора данных о потребляемой электроэнергии.

В счетчики дополнительно могут быть встроены как отдельные устройства: модем передачи информации по сети PLC, радиомодем или модем передачи информации по эфиру GSM.

Счётчики предназначены для эксплуатации внутри закрытых помещений.

Описание

Принцип действия счётчиков основан на преобразовании входных сигналов тока и напряжения трёхфазной сети из аналогового представления в цифровое с помощью аналого-цифрового преобразователя (АЦП). В качестве датчиков тока используются трансформаторы тока или микроомные шунты, в каче-

стве датчиков напряжения - резистивные делители. По выборкам мгновенных значений напряжений и токов в каждой фазе, производится вычисление средней за период сети значений полной (S), активной (P) и реактивной (Q) мощности, при этом реактивная мощность вычисляется по формуле $Q = \sqrt{S^2 - P^2}$. По вычисленным значениям активной и реактивной мощности формируются импульсы телеметрии на выходах счётчика, наращиваются регистры текущих значений по каждому виду накопленной энергии и по каждому тарифу.

Конструктивно счетчики состоят из электронного модуля, отсчетного устройства (жидкокристаллический дисплей или электромеханическое устройство барабанного типа), датчиков тока, расположенных в корпусе. Корпус счетчиков изготовляется методом литья под давлением из ударопрочной пластмассы, зажимная плата, на которой расположены все зажимы, изготовляется из пластмассы с огнезащитными добавками.

Счетчики имеют телеметрический (импульсный) выход с оптической развязкой. Телеметрический выход может использоваться в качестве поверочного выхода или для объединения счетчиков в состав ранее разработанных и эксплуатируемых автоматизированных систем коммерческого учета потребляемой электроэнергии, а также для передачи команды на отключение потребителя от нагрузки (функция управления нагрузкой).

Микроконтроллер электронного модуля выполняет функции связи с энергонезависимой памятью для записи в неё потребляемой электроэнергии, переключения тарифных зон (в счетчиках многотарифных модификаций), взаимодействие с индикатором, а также поддерживает интерфейсные функции связи с внешними устройствами по последовательному цифровому интерфейсу или оптическому каналу при работе в автоматизированной системе сбора и учёта данных о потребляемой электроэнергии и со встроенными модемами.

Основные технические характеристики

Основные технические характеристики счетчиков приведены в таблицах 1 и 2, условные обозначения модификаций счетчиков — на рисунке 1.

	_			4
l a	бл	ип	a	1

	Класс точности			Номиналь-	
Мо- дифи- кация счет- чика	активной энергии по ГОСТ Р 52323- 2005, ГОСТ Р 52322- 2005	реактивной энергии по ГОСТ Р 52425- 2005	Номиналь- ное напря- жение U _{ном} , В	ный /базовый (макси-мальный) ток, А	Стар- товый ток, А
01	0,5S	1	3*57,7/100	5 (7,5)	0,005
02	0,5S	1	3*230/400	5 (7,5)	0,005
03	1	2	3*230/400	5 (60)	0,020
04	1	2	3*230/400	10 (100)	0,040

Таблица 2

D	0.0 1.1 II		
	от 0,9 до 1,1 U _{ном}		
	от 0,8 до 1,15 U _{ном}		
	от 0 до 1,15 U _{ном}		
	50 Гц		
Постоянная счетчика имп/(кВт·ч) (имп/(квар·ч))	10 000		
Количество тарифов	от 1 до 4		
Активная и полная потребляемая мощность в ка-	2 Вт и 10 В·A		
ждой цепи напряжения счётчика, не более			
Полная мощность, потребляемая каждой цепью	0,1 B·A		
тока, не более	0,1 BA		
Точность хода часов во включенном и выклю-			
ченном состоянии при нормальной температуре,	± 0,5		
с/сут, не более			
Предел дополнительной абсолютной погрешно-			
сти хода часов в диапазоне температур во вклю-			
ченном и выключенном состоянии, с/сут, не бо-			
лее:			
- в диапазоне от минус 10 до + 45 °C	$\pm 0,15$		
- в остальном рабочем диапазоне температур	± 0,2		
Цена единиц разрядов суммирующего устройст-			
ва, кВт-ч (квар-ч)			
- младшего	0,01		
- старшего	100 000		
Параметры импульсного (телеметрического) вы-			
хода:			
- сопротивление выхода в состоянии «замкнуто»,			
Ом, не более	200		
- сопротивление выхода в состоянии «разомкну-			
то», кОм, не менее	50		
- ток выхода в состоянии «замкнуто», мА,			
не более	30		
- напряжение на контактах выхода, В, не более	24		
Предельный рабочий диапазон температур	от минус 40 до плюс 60°C		
Предельный диапазон хранения и транспортиро-	OT MANY 50 TO THE 2 70°C		
вания	от минус 50 до плюс 70°C		
Масса счётчика, не более	2,0 кг		
Габаритные размеры для типа корпуса, мм, не			
более:			
- S1	298×154×81		
- S2	290×175×75		
- D1	119×145×65		
Средняя наработка счётчика до отказа, не менее	145000 ч		
Средний срок службы счётчика, не менее	30 лет		

Комплектность

В комплект поставки входит:

- счетчик электрической энергии трехфазный статический Барс-3,
- инструкция по монтажу и паспорт,
- руководство по эксплуатации,
- методика поверки,
- коробка упаковочная.

Поверка

Поверка счетчиков электрической энергии трехфазных статических Барс-3 осуществляется согласно «Счетчики электрической энергии трехфазные статические Барс-3. Методика поверки», утвержденной руководителем ГЦИ СИ ФГУ «Татарстанский центр стандартизации, метрологии и сертификации» в марте 2010 г.

При проведении поверки применяются следующие средства измерений:

- установка для поверки счетчиков электрической энергии ЦУ6800, кт 0,2 %;
- универсальная пробойная установка УПУ-10,
- секундомер СОС ПР-2Б-2-000.

Межповерочный интервал – 16 лет.

Нормативные и технические документы

- ГОСТ Р 52320-2005 (МЭК62052-11:2003) Аппаратура для измерения электрической энергии переменного тока. Общие требования. Испытания и условия испытаний. Часть 11. Счетчики электрической энергии.
- ГОСТ Р 52322-2005 (МЭК62053-21:2003) Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 21. Статические счетчики активной энергии классов точности 1 и 2.
- ГОСТ Р 52323-2005 (МЭК 62053-22:2003) Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счётчики активной энергии классов точности 0,2S и 0,5S.
- ГОСТ Р 52425-2005 (МЭК 62053-23:2003) Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счётчики реактивной энергии
- ТУ 4228-006-27833745-2010 Счетчики электрической энергии трехфазные статические Барс-3. Технические условия.

Заключение

Тип счетчиков электрической энергии трехфазных статических Барс-3 утвержден с техническими и метрологическими характеристиками, приведенны-

ми в настоящем описании типа, метрологически обеспечен при выпуске из производства согласно государственной поверочной схеме.

Выдан сертификат соответствия требованиям безопасности и электромагнитной совместимости № РОСС RU.AЯ54.B17081.

Изготовитель

ЗАО «Восток-Скай»

422981, Республика Татарстан, г. Чистополь, ул. Энгельса, 127

Телефон/факс: (84342) 945-54, 942-54;

Адрес сайта предприятия-изготовителя: www.vostok-sky.ru

Адрес электронной почты: info@vostok-sky.ru

Директор ЗАО «Восток-Скай»

Р.В. Калимуллин