ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ ДЛЯ ГОСУДАРСТВЕННОГО РЕЕСТРА

СОГЛАСОВАНО

Руководитель ГЦИ СИ

Зам Генерального директора

ОГУ СРОСТВЕТ ДОТ СИТОТА

А.С. Евдокимов

2009 г.

Измерители иммитанса цифровые АКИП-6104

Внесены в Государствен	ный реестр
средств измерений Регистрационный номер Взамен №	<u> 40912.09</u>

Выпускаются по технической документации фирмы «MOTECH INDUSTRIES INC.», Тайвань.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Измерители иммитанса цифровые АКИП-6104 (далее по тексту — измерители) предназначены для измерения параметров радиотехнических компонентов и электрических цепей (резисторов, конденсаторов, катушек индуктивности), представляемых параллельной или последовательной двухэлементной схемой замещения.

Область применения измерителей – проведение работ в процессах наладки, ремонта и лабораторных исследованиях на предприятиях электронной и радиотехнической промышленности, в научно-исследовательских институтах и научно-производственных организациях.

ОПИСАНИЕ

Измерители иммитанса цифровые АКИП-6104 представляют собой многофункциональные цифровые портативные электроизмерительные приборы.

На лицевой панели измерителей расположены функциональные клавиши, входные разъёмы, предназначенные для присоединения измерительных проводов и подключения их к измеряемой сети, жидкокристаллический цифровой дисплей. Функциональные клавиши служат для переключения пределов измерений и выбора специальных функций при измерениях. Измеренные значения отображаются на жидкокристаллическом дисплее, имеющем цифровую шкалу, индикаторы режимов измерения, индикаторы единиц измерения и индикаторы текущего состояния измерительного процесса.

Измерители снабжены интерфейсом типа RS-232 для связи с персональным компьютером с оптической развязкой.

Измерители АКИП-6104 обеспечивают измерение параметров иммитанса (сопротивления, емкости, индуктивности) с базовой погрешностью 0,2 %.

Принцип работы измерителей основан на анализе прохождения тестового сигнала с заданной частотой через цепь, обладающую комплексным сопротивлением и последующим сравнением с опорным напряжением.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1 – Основные метрологические характеристики в режиме измерения сопротивления

постоянному току

Частота тест-сигнала	Диапазон измерения	Предел допускаемой абсолютной погрешности измерения
Постоянный ток	от 0,1 до 1 Ом	$\pm (0.01 \cdot R_{\text{изм}} + 1 \text{ e.m.p.})^*$
	от 1 до 10 Ом	$\pm (0,005 \cdot R_{\text{изм}} + 1 \text{ e.m.p.})$
	от 10 Ом до 100 кОм	$\pm (0,002 \cdot R_{\text{изм}} + 1 \text{ e.m.p.})$
	от 100 кОм до 1 МОм	$\pm (0.005 \cdot R_{\text{изм}} + 1 \text{ e.м.p.})$
	от 1 до 10 МОм	$\pm (0.01 \cdot R_{\text{изм}} + 1 \text{ e.m.p.})$
	от 10 до 20 МОм	$\pm (0.02 \cdot R_{\text{\tiny H3M}} + 1 \text{ e.m.p.})^*$

Примечания

- $1\ R_{\mbox{\tiny H3M.}}$ измеренное значение сопротивления постоянному току
- 2 Погрешность нормируется для напряжения тест-сигнала 1 В
- 3 При напряжении тест-сигнала 250 мВ погрешность умножается на 1,25
- 4 При напряжении тест-сигнала 50 мВ погрешность умножается на 1,5
- * погрешность не нормируется, если напряжение тест-сигнала 50 мВ

Таблица 2 - Основные метрологические характеристики в режиме измерения комплексного

сопротивления

Частота тест-сигнала	Диапазон измерения	Предел допускаемой абсолютной погрешности измерения
	от 0,1 до 1 Ом	$\pm (0.01 \cdot Z_{\text{изм}} + 1 \text{ e.m.p.})^*$
	от 1 до 10 Ом	$\pm (0,005 \cdot Z_{\text{изм}} + 1 \text{ e.м.p.})$
100 Гц; 120 Гц;	от 10 Ом до 100 кОм	$\pm (0.002 \cdot Z_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
1201ц, 1 кГц	от 100 кОм до 1 МОм	$\pm (0.005 \cdot Z_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
	от 1 до 10 МОм	$\pm (0.01 \cdot Z_{\text{изм}} + 1 \text{ e.м.p.})$
	от 10 до 20 МОм	$\pm (0.02 \cdot Z_{\text{изм}} + 1 \text{ e.m.p.})^*$
10 кГц	от 0,1 до 1 Ом	$\pm (0.01 \cdot Z_{\text{изм}} + 1 \text{ e.m.p.})^*$
	от 1 до 10 Ом	$\pm (0.005 \cdot Z_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
	от 10 Ом до 100 кОм	$\pm (0,002 \cdot Z_{\text{изм}} + 1 \text{ e.м.p.})$
	от 100 кОм до 1 МОм	$\pm (0.005 \cdot Z_{\text{изм}} + 1 \text{ e.m.p.})$
	от 1 до 10 МОм	$\pm (0.02 \cdot Z_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
	от 10 до 20 МОм	$\pm (0.05 \cdot Z_{\text{изм}} + 1 \text{ e.м.p.})^*$
	от 0,1 до 1 Ом	$\pm (0.05 \cdot Z_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
10 кГц	от 1 до 10 Ом	$\pm (0.02 \cdot Z_{\text{\tiny H3M}} + 1 \text{ e.m.p.})^*$
	от 10 Ом до 100 кОм	$\pm (0.004 \cdot Z_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
	от 100 кОм до 1 МОм	$\pm (0.02 \cdot Z_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
	от 1 до 10 МОм	$\pm (0.05 \cdot Z_{M3M} + 1 \text{ e.m.p.})$
	от 10 до 20 МОм	Не нормируется

Примечания

- 1 Z_{изм.} измеренное значение комплексного сопротивления
- 2 Погрешность нормируется для напряжения тест-сигнала 1 В
- 3 При напряжении тест-сигнала 250 мВ погрешность умножается на 1,25
- 4 При напряжении тест-сигнала 50 мВ погрешность умножается на 1,5
- * погрешность не нормируется, если напряжение тест-сигнала 50 мВ

Таблица 3 – Основные метрологические характеристики в режиме измерения емкости

аолица 3 — Основные метрологические характеристики в режиме измерения емкости		
Частота тест-сигнала	Диапазон измерения Предел допускаемой абсолють погрешности измерения	
	менее 79,57 пФ	Не нормируется
100 Гц	от 79,57 до 159,1 пФ	$\pm (0.02 \cdot C_{\text{изм}} + 1 \text{ e.m.p.})^*$
	от 159,1 пФ до 1,591 нФ	$\pm (0.01 \cdot C_{\text{изм}} + 1 \text{ e.м.p.})$
	от 1,591 до 15,91 нФ	$\pm (0,005 \cdot C_{изм} + 1 \text{ e.м.р.})$
	от 15,91 нФ до 159,1 мкФ	$\pm (0,002 \cdot C_{изм} + 1 \text{ e.м.р.})$
	от 159,1 до 1591 мкФ	$\pm (0.005 \cdot C_{\text{изм}} + 1 \text{ e.м.p.})$
	от 1591 мкФ до 15,91 мФ	$\pm (0.01 \cdot C_{\text{изм}} + 1 \text{ e.m.p.})^*$
	менее 66,31 пФ	Не нормируется
	от 66,31 до 132,6 пФ	$\pm (0.02 \cdot C_{\text{изм}} + 1 \text{ e.м.p.})^*$
	от 132,6 пФ до 1,326 нФ	$\pm (0.01 \cdot C_{\text{изм}} + 1 \text{ e.м.p.})$
120 Гц	от 1,326 до 13,26 нФ	$\pm (0.005 \cdot C_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	от 13,26 нФ до 132,6 мкФ	$\pm (0.002 \cdot C_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	от 132,6 до 1326 мкФ	$\pm (0.005 \cdot C_{M3M} + 1 \text{ e.m.p.})$
	от 1326 мкФ до 13,26 мФ	$\pm (0.01 \cdot C_{\text{\tiny M3M}} + 1 \text{ e.m.p.})^*$
	менее 7,957 пФ	Не нормируется
	от 7,957 до 15,91 пФ	$\pm (0.02 \cdot C_{\text{изм}} + 1 \text{ e.м.p.})^*$
	от 15,91 до 159,1 пФ	$\pm (0.01 \cdot C_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
1 кГц	от 159,1 пФ до 1,591 нФ	$\pm (0.005 \cdot C_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
	от 1,591 нФ до 15,91 мкФ	$\pm (0.002 \cdot C_{M3M} + 1 \text{ e.m.p.})$
	от 15,91 до 159,1 мкФ	$\pm (0.005 \cdot C_{M3M} + 1 \text{ e.m.p.})$
	от 159,1 мкФ до 1,591 мФ	$\pm (0.01 \cdot C_{\text{\tiny H3M}} + 1 \text{ e.m.p.})^*$
	менее 0,795 пФ	Не нормируется
	от 0,795 до 1,591 пФ	$\pm (0.05 \cdot C_{u_{3M}} + 1 \text{ e.m.p.})^*$
	от 1,591 до 15,91 пФ	$\pm (0.02 \cdot C_{\text{изм}} + 1 \text{ e.m.p.})$
10 кГц	от 15,91 до 159,1 пФ	$\pm (0.005 \cdot C_{\text{изм}} + 1 \text{ e.m.p.})$
	от 159,1 пФ до 1,591 мкФ	$\pm (0.002 \cdot C_{изм} + 1 \text{ e.м.p.})$
	от 1,591 до 15,91 мкФ	$\pm (0.005 \cdot C_{\text{изм}} + 1 \text{ e.m.p.})$
	от 15,91 до 159,1 мкФ	$\pm (0.01 \cdot C_{\text{изм}} + 1 \text{ e.м.p.})^*$
	менее 0,159 пФ	Не нормируется
	от 0,159 до 1,591 пФ	$\pm (0.05 \cdot C_{M3M} + 1 \text{ e.m.p.})^*$
100	от 1,591 до 15,91 пФ	$\pm (0.02 \cdot C_{\text{изм}} + 1 \text{ e.m.p.})$
100 кГц	от 15,91 пФ до 159,1 нФ	$\pm (0.004 \cdot C_{\text{изм}} + 1 \text{ e.м.p.})$
	от 159,1 нФ до 1,591 мкФ	$\pm (0.02 \cdot C_{\text{изм}} + 1 \text{ e.m.p.})$
	от 1,591 до 15,91 мкФ	$\pm (0.05 \cdot C_{\text{\tiny H3M}} + 1 \text{ e.m.p.})^*$

Примечания

¹ Сизм. – измеренное значение емкости

² Погрешность нормируется для напряжения тест-сигнала 1 B и тангенса угла потерь $D \le 0,1$

 ³ В случае, когда D > 0,1, погрешность умножается на $\sqrt{1+D^2}$

⁴ При напряжении тест-сигнала 250 мВ погрешность умножается на 1,25

⁵ При напряжении тест-сигнала 50 мВ погрешность умножается на 1,5

^{* –} погрешность не нормируется, если напряжение тест-сигнала 50 мВ

Таблица 4 – Основные метрологические характеристики в режиме измерения индуктивности

Частота тест-сигнала	Диапазон измерения	Предел допускаемой абсолютной погрешности измерения
	менее 159,1 мкГн	Не нормируется
	от 159,1 мкГн до 1,591 мГн	$\pm (0.01 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	от 1,591 до 15,91 мГн	$\pm (0,005 \cdot L_{изм} + 1 \text{ e.м.р.})$
100 Гц	от 15,91 мГн до 159,1 Гн	$\pm (0,002 \cdot L_{изм} + 1 \text{ e.м.р.})$
	от 159,1 до 1591 Гн	$\pm (0,005 \cdot L_{изм} + 1 \text{ e.м.р.})$
	от 1591 Гн до 15,91 кГн	$\pm (0.01 \cdot L_{\text{изм}} + 1 \text{ e.м.p.})^*$
	от 15,91 до 31,83 кГн	$\pm (0.02 \cdot L_{\text{изм}} + 1 \text{ e.m.p.})$
	менее 132,6 мкГн	Не нормируется
	от 132,6 мкГн до 1,326 мГн	$\pm (0.01 \cdot L_{\text{изм}} + 1 \text{ e.м.p.})$
	от 1,326 до 13,26 мГн	$\pm (0,005 \cdot L_{изм} + 1 \text{ e.м.р.})$
120 Гц	от 13,26 мГн до 132,6 Гн	$\pm (0.002 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	от 132,6 до 1326 Гн	$\pm (0.005 \cdot L_{M3M} + 1 \text{ e.m.p.})$
	от 1326 Гн до 13,26 кГн	$\pm (0.01 \cdot L_{\text{изм}} + 1 \text{ e.m.p.})^*$
	от 13,26 до 26,52 кГн	$\pm (0.02 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	менее 15,91 мкГн	Не нормируется
	от 15,91 до 159,1 мкГн	$\pm (0.01 \cdot L_{\text{изм}} + 1 \text{ e.м.p.})$
	от 159,1 мкГн до 15,91 мГн	$\pm (0.005 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
1 кГц	от 15,91 мГн до 159,1 Гн	$\pm (0.002 \cdot L_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
	от 159,1 до 1591 Гн	$\pm (0.005 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	от 1591 Гн до 15,91 кГн	$\pm (0.01 \cdot L_{\text{изм}} + 1 \text{ e.m.p.})^*$
	от 15,91 до 31,83 кГн	$\pm (0.02 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	менее 1,591 мкГн	Не нормируется
	от 1,591 до 15,91 мкГн	$\pm (0.01 \cdot L_{\text{изм}} + 1 \text{ e.м.p.})$
	от 15,91 до 159,1 мкГн	$\pm (0.005 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
10 кГц	от 159,1 мкГн до 1,591 Гн	$\pm (0.002 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	от 1,591 до 15,91 Гн	$\pm (0.005 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	от 15,91 до 159,1 Гн	$\pm (0.02 \cdot L_{\text{изм}} + 1 \text{ e.м.p.})^*$
	от 159,1 до 318,3 Гн	$\pm (0.05 \cdot L_{\text{\tiny H3M}} + 1 \text{ e.m.p.})$
	менее 0,159 мкГн	Не нормируется
	от 0,159 до 1,591 мкГн	$\pm (0.05 \cdot L_{\text{изм}} + 1 \text{ e.м.p.})^*$
	от 1,591 до 15,91 мкГн	$\pm (0.02 \cdot L_{\text{изм}} + 1 \text{ e.m.p.})$
100 кГц	от 15,91 мкГн до 159,1 мГн	$\pm (0.004 \cdot L_{\text{\tiny M3M}} + 1 \text{ e.m.p.})$
	от 159,1 мГн до 1,591 Гн	$\pm (0.02 \cdot L_{\text{изм}} + 1 \text{ e.м.p.})$
	от 1,591 до 15,91 Гн	$\pm (0.05 \cdot L_{изм} + 1 \text{ e.м.р.})^*$
	от 15,91 до 31,83 Гн	Не нормируется

Примечания

 $^{1\} L_{\text{изм.}}$ – измеренное значение индуктивности

² Погрешность нормируется для напряжения тест-сигнала 1 B и тангенса угла потерь $D \le 0,1$

³ В случае, когда D > 0,1, погрешность умножается на $\sqrt{1+D^2}$

⁴ При напряжении тест-сигнала 250 мВ погрешность умножается на 1,25

⁵ При напряжении тест-сигнала 50 мВ погрешность умножается на 1,5

^{* –} погрешность не нормируется, если напряжение тест-сигнала 50 мВ

Таблица 5 — Пределы допускаемой абсолютной погрешности установки частоты и напряжения тест-сигнала

Наименование параметра	Значение	Пределы допускаемой абсолютной погрешности установки
Частота	100, 120 Гц; 1, 10, 100 кГц	$\pm (0.001 \times f)$
Напряжение	50 мВ; 250 мВ; 1 В	± (0,05 × U)

Общие характеристики:

выбор диапазона измерения	автоматический
время одного измерения	0,4 c; 0,2 c
габаритные размеры, мм	
масса, кг	0,47

Питание измерителей осуществляется от двух 1,5 В NiMh аккумуляторных батарей или от сетевого адаптера питания постоянного тока.

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносят на титульный лист руководства по эксплуатации типографским способом и на корпус измерителей методом трафаретной печати со слоем защитного покрытия.

КОМПЛЕКТНОСТЬ

Таблица 6 – Комплектность измерителей

Наименование	Обозначение	Количество
Измеритель иммитанса цифровой	АКИП-6104	1
Аккумуляторная батарея	_	2
Сетевой адаптер	_	1
Комплект измерительных кабелей	TL08C	1
Руководство по эксплуатации	_	1
Методика поверки	МП-121/447-2009	1
Упаковочная коробка	_	1

ПОВЕРКА

Поверку измерителей иммитанса цифровых АКИП-6104 следует проводить в соответствии с документом МП-121/447-2009 «Измерители иммитанса цифровые АКИП-6104. Методика поверки», утвержденным ГЦИ СИ ФГУ «Ростест-Москва» в июне 2009 г.

Основное оборудование, используемое при поверке:

- частотомер электронно-счетный Ч3-63/1;
- мультиметр цифровой Agilent 34410A;
- меры сопротивления образцовые Е1-5;
- магазин электрического сопротивления Р4834;
- магазин сопротивления Р40101;
- меры емкости образцовые Р597;
- меры индуктивности Р596.

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

ГОСТ 22261-94 «Средства измерения электрических и магнитных величин. Общие технические условия».

ГОСТ 25242-93 «Измерители параметров иммитанса цифровые. Общие технические требования и методы испытаний».

Техническая документация фирмы-изготовителя.

ЗАКЛЮЧЕНИЕ

Тип измерителей иммитанса цифровых АКИП-6104 утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

ИЗГОТОВИТЕЛЬ

Фирма «MOTECH INDUSTRIES INC.», Тайвань Shen-keng Hsiang, Taipei Hsien, Taiwan Тел: 886-2-2662-5093, факс: 886-2-2662-5097

Представитель фирмы «MOTECH INDUSTRIES INC.», Тайвань ЗАО «ПриСТ» 115419, Москва, ул. Орджоникидзе 8/9

Генеральный директор ЗАО «ПриСТ»

А.А. Дедюхин