ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЯ

СОГЛАСОВАНО

Руководитель ГЦИ СИ – Директор ФГУП ВНИИР

В.П. Иванов

2005 г

Системы измерения расхода пара СИРП

Внесены в Государственный реестр средств измерений Регистрационный номер 26580-04 Взамен

Изготовлены по техническим условиям СДАИ 41153(002 ТУ, партия в количестве 41 шт. с заводскими номерами 05-45.

Назначение и область применения

Системы измерения расхода пара СИРП (далее — системы) предназначены для измерения расхода острого пара с целью получения сигнала управления для автоматического регулирования уровня воды в парогенераторах энергоблоков АЭС с реакторной установкой ВВЭР-1000.

Область применения – атомная энергетика, в частности, Балаковская АЭС.

Описание

Принцип действия системы измерения расхода пара СИРП заключается в измерении перепада давления при обтекании потоком пара пневмометрической трубки преобразователя расхода и дальнейшей обработки сигнала перепада с помощью корректора тока КТ1.

Пневмометрическая трубка представляет собой цилиндрическую трубку из стали 12X18H10T, помещенную в трубопроводе, отводящем острый пар из парогенератора, на участке между парогенератором и патрубками предохранительных клапанов. Длина пневмометрической трубки выбрана такой, что перепад давления на трубке пропорционален средней по сечению трубопровода скорости потока. Токовые сигналы от датчиков преобразования давления и перепада давления на пневмометрической трубке подаются на вход корректора тока КТ1.

Давление в трубопроводе и перепад давления измеряются с помощью датчика избыточного давления «Метран-22-ДИ» и датчика разности давлений «Метран-22-ДД» (Номер Госреестра № 17896-00) с наклейками «Годен для АС».

В корректоре тока производится обработка поступивших сигналов для получения откорректированного по давлению токового сигнала, соответствующего измеряемому расходу пара.

Преобразователь расхода в данном случае работает как часть регулятора уровня парогенератора, при этом инерционное измерение разности температур теплоносителя

(косвенное измерение расхода пара, которое характеризуется очень большим запаздыванием, ~ 30 секунд) заменено на прямое безинерционное измерение расхода пара.

Основные технические характеристики

Максимальный расход пара, т/ч	1574
Номинальный расход пара, т/ч	1470
Минимальный расход пара, т/ч	300
Пределы допускаемой основной относительной погрешности	±4
Дополнительная погрешность при изменении напряжения	
питания и температуры в заданных диапазонах, не более 0,5 от с	основной погрешности
Выходной сигнал корректора тока, мА	0-5, 0-20
Быстродействие корректора, мс, не более	20
Пределы основной погрешности корректора, %	±0,25
Рабочее давление пара, МПа, не более	6,4
Максимальное давление пара, МПа	8
Рабочая температура пара, ⁰ C	275
Максимальная температура пара, ⁰ C	300
Кинематическая вязкость пара в рабочих условиях, м 2 /с, не более	0,75
Номинальное значение влажности пара, %, не более	0,2
Плотность пара в рабочих условиях, $\kappa r \setminus M^3$, не более	32
Потребляемая мощность, ВА, не более	J 22
для корректора тока КТ1	30
датчика избыточного давления «Метран-22-ДИ» и	50
дат ижа изовто пюго давления «Метран 22-ДЛ» и датчика разности давлений «Метран-22-ДД»	1
Напряжение питания от сети переменного тока, В	220^{+22}_{-33}
Частота напряжения питания, Гц	50±1
Условия эксплуатации:	3011
пневмометрической трубки:	
температура, ⁰ С, не более	300
	300
корректора:	1 40
температура, ⁰ С	от 1 до 40
относительная влажность, %, не более	90
датчика избыточного давления «Метран-22-ДИ» и	
датчика разности давлений «Метран-22-ДД»: температура, 0 С	
	от плюс 5 до плюс 70
относительная влажность, %, не более	98
Габаритные размеры, мм, не более:	
пневмометрической трубки	330xø18
корректора тока КТ1	128x90x202
Масса, кг, не более	
пневмометрической трубки	1,2
корректора тока КТ1	2
Габаритные размеры и масса «Метран-22-ДИ» и «Метран-22-ДД	
соответствуют техническим условиям на применяемый датчик да	
Средний срок службы, лет, не менее	12
Средняя наработка на отказ, ч, не менее	100000

Знак утверждения типа

Знак утверждения типа наносят на специальную табличку на лицевой панели корректора тока методом штемпелевания и на титульный лист руководства по эксплуатации типографским способом в соответствии с ПР 50.2.009-94.

Комплектность

Комплект поставки приведен в таблице 1:

Таблица 1

Наименование	Обозначение	Количе- ство	Приме- чание
Система измерения расхода пара СИРП, в т.ч.:	СДАИ.411531.002	1 шт.	
преобразователь расхода:			
- пневмометрическая трубка,	320.619	1 шт.	
- импульсные линии (трубки высокого давления),	СПГК. 1529.000		
- датчик избыточного давления «Метран-22-ДИ»,	СПГК. 1529.000	1 шт.	
- датчик разности давления «Метран-22-ДД»;	СПГК. 1529.000	3 шт.	
корректор тока КТ1;	СДАИ.411531.001	3 шт.	
блок питания постоянного тока;		3 шт.	
запорная арматура;		1 компл.	
комплект ЗИП.		1 компл.	
Руководство по эксплуатации. Система			
измерения расхода пара СИРП.		1 mr.	
Инструкция. ГСИ. Система измерения расхода пара			
СИРП. Методика поверки.		1 шт.	

Поверка

Средства измерений, входящие в состав системы, должны быть поверены в соответствии с их нормативными документами на поверку и с межповерочными интервалами, указанными в этих нормативных документах.

Поверку системы измерения расхода пара СИРП проводят в соответствии с документом «Инструкция. ГСИ. Система измерения расхода пара СИРП. Методика поверки», утвержденным ГЦИ СИ ВНИИР в феврале 2005 г.

В перечень основного поверочного оборудования входят:

- расходомер эталонный на базе стандартной диафрагмы диаметром 27,52 мм с относительной погрешностью не более \pm 1,0 %;
- датчик избыточного давления типа ТЖИУ-406 с верхним пределом измерения 10 МПа, класса 0,15;
- преобразователи термоэлектрические ТХК (L), предел допускаемого отклонения от HCX для класса 2 ± 2.5 °C;

Межповерочный интервал – 1 год.

4 Нормативные документы

ПНАЭГ. Правила и нормы для атомной энергетики, Госатомнадзор, Российская Федерация.

ОТТ-87. Арматура для оборудования и трубопроводов АЭС. Общие технические требования.

ОТТ 08042462. Приборы и средства автоматизации для атомных станций.

ПНАЭ Г-5-006-87. Правила и нормы, применяемые в атомной энергетике. Нормы проектирования сейсмостойких атомных станций.

ПНАЭ Г-7-008-89. Правила и нормы, применяемые в атомной энергетике. Правила устройства и безопасной эксплуатации оборудования и трубопроводов ядерных энергетических установок.

ПНАЭ Г-1-011-89. Правила и нормы, применяемые в атомной энергетике. Общие положения по обеспечению безопасности атомных станций.

ПНАЭ Г-7-002-86. Правила и нормы, применяемые в атомной энергетике. Нормы расчета на прочность оборудования и трубопроводов ядерных энергетических установок.

ПНАЭ Г-009-89. Правила и нормы, применяемые в атомной энергетике. Оборудование и трубопроводы ядерных энергетических установок. Сварка и наплавка. Основные положения.

ПНАЭ Г-010-89. Правила и нормы, применяемые в атомной энергетике. Оборудование и трубопроводы ядерных энергетических установок. Сварные соединения и наплавки. Правила контроля качества.

ОТТ 08042462. Основные технические требования на оборудование и устройства систем управления технологическими процессами атомных станций.

ПНАЭ Г-1-028-91. Правила и нормы, применяемые в атомной энергетике. Требования к программе обеспечения качества для АЭС.

НП-031-01. Нормы проектирования сейсмостойких атомных станций.

ГОСТ Р 50746-2000. Совместимость технических средств электромагнитная. Технические средства для атомных станций.

Система измерения расхода пара. Технические условия. СДАИ 41153.002 ТУ. Корректор тока КТ1. Технические условия. СДАИ 411531.001 ТУ.

Заключение

Тип системы измерения расхода пара СИРП утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, метрологически обеспечен при выпуске из производства и в эксплуатации согласно государственной поверочной схеме.

Имеется сертификат соответствия № 04.001.078 выданный ФГУП «ВНИИМС» со сроком действия с 07.04.2004 г. по 07.04.2007 г.

Изготовитель: Федеральное государственное унитарное предприятие «ЭНИЦ» 142530 г. Электрогорск Московской обл., ул. Безымянная, 6. Телефон: (09643) 3-23-20 Факс: (09643) 3-12-35

Генеральный директор ФГУП «ЭНИП» ФГУП В.Н. Блинков